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Abstract—Botnets are an ever-growing threat to private user’s
machines, small companies, and even large corporations. Botnets
are known for spamming, mass downloads and launching dis-
tributed denial of service (DDoS) attacks that made a destructive
impact on large corporations. Although, with the rise of internet
of things (IoT) devices, they are also used as another resource
to mine crypto currency, intercept data in transit, send logs
containing sensitive information for the master botnet. There
have been many approaches to detect botnet activities with few
approaches using graph neural networks (GNN) that analyze the
behavior of the hosts by using their communications represented
by a directed graph. Unfortunately, GNN even if designed for
preserving structural graph properties due to over-fitting they are
not able to preserve all the structural property especially when the
network is unknown, i.e. it is different from the one used for the
training. In this work we hypothesize the existence of structural
graph patterns that can be used to effectively detect botnet nodes.
Using a structural iterative representation learning approach for
graph nodes, called inferential SIR-GN, we create for each node
a vector representation which represents the nodes’ structural
information. Then, we use a supervised 3 fully connected layers
neural network, to identify bot nodes within an unknown network.

Index Terms—Botnet Detection,Structural Graph Representa-
tion Learning, Machine Learning.

I. INTRODUCTION

Botnets are a system of devices that are controlled by a
host to usually perform harmful activities or for personal gain,
such as DDoS attacks, spamming, information stealing, or
mining crypto currency. The system of Botnets is controlled
using either a single botmaster though command-and-control
(C&C) or a handful of botmasters though peer-to-peer (P2P).
Using only the topological features of communication between
devices.

Current works on botnet detection heavily depends on
operators being able to identify botnet behavior and requires
extensive monitoring. Additionally, many works rely on addi-
tional traffic patterns, packet sizes, prior blacklisted addresses,
and port numbers. This data can be unavailable or manipulated
which can cause unidentifiable patterns. In previous works
which focus more on the topology features of botnets, the size
of the network communications makes it difficult to differentiate
botnet communication patterns from background internet traffic.
Other promising works focus on the communication network of
the machines to extracts the patterns defining the bot’s behavior.

GNNs are used to detect such structural patterns and identify
the bots among the other traffic. Unfortunately, as shown in our
experiments GNNs do not generalize well such patterns, and
they work in part for proximity, i.e., machines interacting with
bot machines have high likelihood to be bot. This means, that
if the GNN is trained on a network of a certain topology and
used against a different one, an unknown network, the detection
performance of the GNN decreases. In this work, we propose
to use the graph representation learning technique Inferential
SIR-GN combined with standard GNN for the classification
to automatically identify topology features which belong to
botnets within large graphs. By using Inferential SIR-GN, that
better preserves the structural information even in the inference
phase, we aim to extract general structural patterns that can
be used on unknown networks to detect bot machines.

This paper is organized as follows. In Section 2, we present
our datasets selection and usage. We explain the functionality
of our model in Section 3. We evaluate our approach in Section
4. Section 5 provides related works of previous detection
approaches. We conclude in Section 6.

II. RELATED WORK

A. Botnet Detection

Due to the versatile nature of botnets, there is an extensive
list of use cases. This leads to the growing evolution of botnet
attacks and complexity. As botnets evolve, so must botnet
detection. It is known that botnets can be aware of different
botnet detection methods and remain hidden. Honeypots are
designed to attract botnets, current botnets are able to identify
the Honeypots and avoid them in order to remain undetected.
(L

The most difficult change in how botnets used to behave
and how they operate now lies with P2P. Past botnet detection
approaches were able to isolate the C&C control node and
end the entire botnet. P2P Botnets are able to share the C&C
command when seized, they have only limited information of
the remaining botnets. [2] The P2P design renders previous
works like BotMiner [3] which used node clusters with similar
communication traffic and similar malicious traffic and then
performs cross-cluster correlation to isolate the central control
node.



Botnets can intentionally manipulate their C&C server
address frequently using ideas like fast flux server networks
to evade traffic monitoring. [4] Which hinders works like
[S] which rely on statistical feature representation computed
from the network traffic. Additional approaches require more
knowledge of the network including the uncompromised botnet
information such as domain names [6] and DNS blacklists [7].
These approaches work very well if the data is available and
has not been altered by a botnet.

In our proposed work, we use a random-walk of clustering
aggregated to maintain the entirety of the graph’s structure in
a vector representation that can be fit for a classifier. A related
work [8]that used random-walk and clustering is our baseline
as the approach is tailored to only look at the topology of the
network. Our approach takes the entirety of the structure which
is why we propose it is better fit for a real world application.

B. Graph Representation Learning

There is an ever growing interest in developing effective
and efficient unsupervised representation learning techniques
for graphs. The changing botnet structure and interactions
with known detection methods opens an area for automated
detection using graph representation learning. In order for
Machine Learning (ML) applications to use a graph’s features,
representation learning methods are needed to render the data
of use.

There has been many different representation learning tech-
niques applied in different areas of study that have been meet
with great success. Some of wich are DeepWalk [9] which con-
tinued the with the well known NLP Skip-Gram model, a.k.a.
World2Vec [10] [11]] which generated word representations by
taking advantage of word sequences (sentences) and using them
to optimize a neighborhood. DeepWalk generalized the Skip-
Gram model from sequences of words to graphs. DeepWalk
used a procedure similar to a Depth-First traversal of the
graph in combination with the neighborhood which results in a
connectivity-based representation learning method where nodes
sharing similar neighbors in a direct (first-order proximity)
or indirect(higher-order proximity) fashion are located closer
in the resulting latent space. Following DeepWalk’s idea
to use Depth-First traversal, LINE [12] proposed using a
Breadth-First traversal where nodes sharing the same edge
(first-order proximity) are located closer in the latent space.
The problem arises when the graph is not fully connected
which is a requirement for Breadth-First. Performance of each
are similar compared to Node2vec [[13]] which uses a random
walk procedure that interpolates between both the Depth-First
and Breadth-First topology. This removes the connectivity
requirement while maintaining a better performance.

All this approach tend to preserve connectivity information
among nodes, however they lack in preserving structural
properties which are crucial to detect bot machine. The most
relevant representation learning approaches preserving structure
are: 1) graph neural networks [[14] such as Graph Convolutional
Neural Network, Struct2Vec [15]], GraphWave [16] and Iterative
procedures [[17], [18]. Among them, only graph neural networks

and the iterative approach Inferential SIR-GN are capable
to perform inference, i.e., they are capable once trained to
produce prediction for graphs different from the one used in the
training. Then structural representation learning techniques with
inference ability are our core techniques for the bot detection
task.

III. DATA DESCRIPTION

There have been many communication patterns of botnets
observed in networks that are considered in our approach. C&C
botnets are easily identified as they have a single bot which is
centralized and has a star pattern. P2P botnets are decentralized
without a star pattern and contains a handful of nodes which
connect most the network with one or two hops. The P2P
botnet clusters are harder to identify as there is no single
center point. In these experiments, the P2P is used to prove
that graph representation learning is able to detect anomalies
that are more difficult to detect using other methods.

The datasets used are composed of real background traffic
collected in 2018 from the IP backbone from CAIDA [19]
(2018)’s monitors. The traffic graph is aggregated as it would be
in a real case scenario for user’s protection. Then at random, a
subset of nodes is selected from the background traffic as botnet
nodes for embedding the different P2P topologies. There are
four different P2P topologies used to create controlled networks
in our experiments. The synthesized networks are DE BRUIIN
[20], KADEMLIA [21]], CHORD |[22], and LEETCHORD [23|].
Also, included in the datasets used is a real P2P network which
captures botnets attack from 2011 [24]] which contain attack
behavior with communication traffic.

The Log-Log plot shown in Figure [I] represents the degree
distribution within our graphs. As the degree (number of edges)
of nodes increase, the frequency (number of nodes) decreases.
This shows that there are few nodes that are highly connected,
and majority of nodes have less than two degrees. The average
cluster in this graphs are 0.007.

Each network contains 960 P2P graphs each with an average
of 144k nodes with over 1.5 million edges and 10k botnet
nodes within each synthetic graph as shown in Figure [2] This
number is based on the real botnet network which contains
144k nodes and 3k botnet nodes. The datasets used to train
contain 10k botnet nodes then the testing set uses a mix of
10k/1k/100 botnet nodes within the networks. All the networks
are highly unbalanced with less than a tenth of the network
containing botnet nodes.

IV. INFERENTIAL SIR-GN PROPOSED METHODOLOGY

Our mythology is based on the Inferential SIR-GN [|18§]]
a structural iterative representation learning procedure with
inference ability. In Table [I| are reported the symbols we use
for the methodology explanation.

Inferential SIR-GN is used for extracting node representa-
tions from directed graph, and is described in detail in Layne
and Serra [18]]. The model relies upon the methodology of SIR-
GN, first described in [17]], wherein a node’s representation is
iteratively updated by describing then aggregating its neighbors.
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Figure 1: Loglog Plot to show the degree distribution of the Data used in the experiments
Table I: Notations used in Model Description.
Notation Description
nc The number of clusters chosen for node representation
ngc The number of clusters chosen for graph representation
k The depth of exploration, equal to a node’s k-hop neighborhood
Dataset Average Nodes Average Edges Average Bot Nodes centroid is converted into a probability of membership of the
Chord 143745 1501242 9990 node in each c}uster: Once a node’s structu.ral d.escriptio.n has
been updated, its neighbors are aggregated into its description
Debru 143745 1671000 9990 . . , -
by summing for each cluster all neighbors’ probabilities of
Kadem 143745 1521258 9990 membership per cluster. The resulting node representation is
o 143745 1509858 9990 faqual to the expected. nurn.ber of neighbors that node possesses
in each cluster. Each iteration corresponds to an added depth of
2y 113743 ABELSAS 3088 exploration, where k iterations will generate a node description
combined 142639 1544005 8617 incorporating the k-hop neighborhood structure of a node.

Figure 2: Average node structure in the Datasets used in Data
Description

The size of a node’s representation at each iteration is equal
to a user-chosen hyperparameter nc. Node descriptions are
generated by clustering the current node description (which

initializes as the node degree) into nc KMeans clusters.

Normalization of the representation occurs before the clustering
step at each iteration, then the distance from each cluster

Inferential SIR-GN differs from the standard model via multiple
modifications, the first being that at the end of each iteration,
we concatenate each node’s structural description into a larger
representation that captures the evolution of the structural
information through deeper neighborhood exploration. After the
final iteration, a Principle Component Analysis (PCA) is used
to prevent degradation of the information as the representation
size grows. The final representation is condensed to a size
chosen as a hyperparameter. For directed graphs, a node’s initial
representation begins as two vectors of size nc, one containing



the node’s in-degree, the other containing its out-degree. These
two are concatenated together before clustering. At each
iteration, clustering of this larger node vector is performed,
followed by aggregation of the neighbors. For directed data, the
aggregation is performed separately for a node’s in-neighbors
and out-neighbors into two intermediate vectors, then once
again concatenated together for the next iteration. Inferential
capability of our proposed model is accomplished by pre-
training the KMeans and scalers for each iteration - a new
KMeans and Scaler are used for every depth of exploration
- along with the PCA model that will be used to generate
the final node embedding. We pre-train on random graphs
and store each model for use in inference. At inference time,
repeated normalization followed by clustering and aggregation
is accomplished using the pre-trained models, and the PCA fit
during training is used to generate the final node representations.
This drastically increases inference time, and the same pre-
trained model can be used on a variety of different data sources.
This is demonstrated extensively in Layne and Serra, along with
a detailed algorithm and description of the time complexity of
the model. The SIR-GN vectors which represents our graphs
structural information can be used in any classifier to learn
the botnets topology for automated detection. Our SIR-GN
vectors represent and aggregated vector of all the layers in each
node. Once the structural representation of each node (each
machine of the network) are achieved they are passed through
the Neural Network Classification algorithm to classify if a
node/machine is a bot or not.

V. EXPERIMENT
A. Methods

Using the 4 different topologies mentioned in section 2 there
are 4 different collections of datasets created. For each topology,
960 graphs are created by applying the botnet topology to real
world traffic. The actual P2P attack contains 960 graphs of
real botnet attacks. These graphs were split into an 8:2 ratio
for training and testing. The ABD-GN utilizes all graphs in a
GNN in order to fit the model for that specific topology. With
SIR-GN the models only need to train on 50 graphs to fully
learn the topologies. The models were tested against the same
topology and other topologies. This was done to test the graph
representation learning model on all the different topologies
simultaneously with out the need to over fit for a single P2P
topology.

When starting this experiment, a split of each different
networks in an 8:2 ratio is used in the training and testing. With
only the communication information (edge relations) between
the nodes, the SIR-GN is used to create a vector representation
for each nodes’ structure in each graph. Then the nodes and
vectors are passed into a classifier (3 layered Neural Network)
to then test on.

The model used in [8] (ABD-GN) is another GNN that has
been tailored for botnet detection. This baseline was chosen to
compare our graph representation learning, SIR-GN inside a
classifier, which can be applied for any GNN problem. With
having the ability to quickly generate vector representations

without losing any structural information, we are able to get
similar scores as a tailored GNN approach.

The evaluations of the different trained models include the
average false positive rate, false negative rate, accuracy, and F1
scores for an equal comparison. This test our features generated
automatically without any additional tailoring against another
GNN that has been tailored for the best results. This experiment
of testing the automation of a vector representation within a
classifier further proves botnet detection using GNN as an
effective approach compared with non-learning methods.

B. Evaluations

In Table [IIf the classifier using SIR-GN vector representation
(isirgnl), F1 scores on all the synthetic datasets come within 5
percent of the GNN model (ABD-GN) which was tailored for
the datasets. The F1 score is based on the false positive, false
negative and true positive scores which accurately represents
our goal in detecting botnets automatically.

Table II: Botnet detection results on synthetic and real botnet
topologies. FP represents the false positive rate, FN represents
the false negative rate, ACC represents the accuracy, F1
represents the F1 score. All the scores are rounded to the
nearest two decimals, and are an average over all the graphs
in the test set.

Chord
H Model FP FN ACC Fl1 H
ABD-GN  0.02 147 99.88 99.12
isirgnl 0.01 0.60 99.87 99.39
DE Bruijn
H Model FP FN ACC Fl1 H
ABD-GN  0.00 0.09 99.99 99.93
isirgnl 0.00 032 9998 99.50
KADEM
H Model FP FN ACC Fl1 H
ABD-GN 003 2.05 99.83 98.77
isirgnl 0.02 269 9831 99.10
LEET
H Model FP FN ACC Fl1 H
ABD-GN  0.02 1.18 9990 99.30
isirgnl 0.00 036 9992 99.78
P2P
H Model FP FN ACC Fl1 H
ABD-GN 0.0l 096 9997 99.29
isirgnl 0.02 215 99.00 97.85

The ABD-GN results from [8]] performs well when targeting
a single topology as shown in Table When these same
trained models are tested against a different topology, however,
the results very from good to very poor. As shown in Figure
[3] Using the SIR-GN on a combined topology, the SIR-GN is
able to identify patterns within all the different topology for a
more rounded classification.

As shown in Figure [3] using only a GNN approach to learn
a single topology fails at detecting many different topologies.
The real world botnet attack can not be detected by ABD-GN
without prior knowledge of the botnet used in the attack’s
structure. Even with using the methodology mentioned in
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section IV the models trained on a single topology is not can be see in Figure [3] that using many different botnet attacks
able to identify unknown topologies. structures the results are very similar with the SIR-GN model
approach is able to reach an F1 score within 5% of the same
topology of which it was trained on. Witch is better than
less over 90% lower score on a different topology as seen in
Figure [3a] and Figure [b] which signals over fitting for a single
topology.

A large improvement seen in Figure [3]is when ABD-GN is
trained on any of the 4 synthetic datasets (Figure fa] Figure {b]
Figure [4d] Figure [4c) the GNN fails to detect the real world
p2p networks with scores less than 3%.

When applying SIR-GN to a any single topology, the model
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Figure 4: Training on one graph compared to training on 50 graphs tested on the same 96 graphs.

When applying our approach to an equal split of each
different topology, while also testing on an equal split, the
SIR-GN is still able to achieve a higher F1 score for some
topologies while maintaining a low false positive (FP) score
as shown in Table

While developing the training set, the increase in networks
trained on did not influence the testing scores. Trained on only
a single graph generated less than a 5% change in the scores as
shown in Figure 4] We chose 50 as a good training set size to
get balance of under fitting. The scores between 50 networks

trained on and 100 networks trained on was less than 0.001%.
This showed a that we do not have the limitation of over fitting
and there is no benefit in using more networks in the training
set.

The difference in training sizes show how the Neural
Network Classification receives enough information from the
SIR-GN to determine the classifications. Unlike the ABD-GN,
which relies on a very large amount of data to train on to fit
the Neural Network classification.



VI. CONCLUSION

We proposed that using SIR-GN we can generate vector rep-
resentations that retain all the necessary structural information
to create a graph representation learning solution which can
be implemented in automated botnet detection. The SIR-GN
can be implemented in other GNN applicable problems for
a efficient and effective unsupervised representation learning
technique.

Unlike previous works [8] which relied on the graphical
topology structure, the SIR-GN is able to retain the entirety of
the graph’s structure and identify botnets with any topology.

Since botnet’s topology is changing very rapidly and as
botnet’s applicability increases, the use of different new and
old typologies is expanding. If a GNN is to be expected for
an automated detection application for all botnets, the SIR-GN
can be adapted and applied to new and unseen botnets with
low false positive rates.

The large loss in detection while applying same concept to
the real world dataset as the synthetic datasets is seen as a
problem. There is room for further experiments on real world
applicability with different gathered datasets of networks. It has
been shown that single application of a GNN for a particular
set of topologies is more effective than many previous attempts.
While with limited data, a GNN is fast and effective enough for
an automated detection application with more room to adapt
to new botnet designs.
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