2FWL-SIRGN A Scalable Higher-Order Graph
Representation Learning Approach®

* Via 2-dimensional Folklore Weisfeiler Lehman and Structural Graph Partitioning

Justin Carpenter
dept. Computer Science
Boise State University
Boise, Idaho, Country
justincarpenter836 @u.boisestate.edu

Abstract—Graph representation learning has numerous appli-
cations, ranging from social networks to bioinformatics, with
a major focus on Graph Neural Networks (GNNs). However,
many GNN models face challenges in capturing intricate graph
structures, such as cycles, and are prone to overfitting and high
computational costs, limiting their scalability on medium to big
graphs.

In this paper, we propose 2FWL-SIRGN, a novel approach that
integrates higher-order Weisfeiler-Lehman (WL) test algorithm
while mitigating its computational challenges. Our method com-
bines the Structural Iterative Representation Learning for Graph
Nodes (SIRGN) framework with the 2-dimensional Folklore
Weisfeiler-Lehman (2FWL) isomorphism test. The unsupervised
training of the SIRGN component improves the model’s resis-
tance to overfitting, while the 2FWL component enhances its
expressive power, enabling it to capture complex patterns, such
as cycle structures. However, the inclusion of 2FWL increases
computational overhead. To address this, we introduce a Struc-
tural Graph Partitioning algorithm, which allows 2FWL-SIRGN
to scale efficiently to big graphs.

Extensive experiments demonstrate that 2FWL-SIRGN outper-
forms state-of-the-art methods by addressing key challenges in
graph representation learning. Our model captures richer struc-
tural information while maintaining computational efficiency,
surpassing other higher-order WL approaches. Additionally, our
partitioning strategy enables 2FWL-SIRGN to effectively handle
large-scale graphs, and its inherent resistance to overfitting
addresses a common limitation of GNNs. These advancements
position 2FWL-SIRGN as a robust solution for real-world appli-
cations where both scalability and accuracy are critical.

Index Terms—Higher-Order, Graph Representation Learning,
Structural Graph Partitioning, Folklore Weisfeiler-Lehman

I. INTRODUCTION

Graphs are powerful data structures that represent entities
as nodes and the relationships between them as edges. Graph-
structured data is one of the most ubiquitous forms of struc-
tured data used in machine learning approaches, such as graph
neural networks (GNNs) and graph representation learning. In
order to utilize graph-structured data, many studies have been
done to transform these complex structures into a format that
can be easily processed by machine learning algorithms while
preserving the graph’s informational content. [[L]

Edoardo Serra
dept. Computer Science
Boise State University
Boise, Idaho, Country
edoardoserra@boisestate.edu

Recent years have seen a surge in research on graph
representation learning techniques in various machine learning
tasks such as node classification, link prediction, and graph
classification. Instead of extracting hand-engineered features,
graph representation learning aims to learn representations that
encode structural information about the graph. [2]]

There are two well explored concepts within graph rep-
resentation learning, structural and proximity, each with the
same end goal to transform a graphs informational content
into a usable format. Although similar end goal, the two
concepts differ from one another on capturing different types
of information within the graph. Structural representation
learning focuses on capturing the positions of nodes within
the entire graph, irrespective of their local neighborhoods.
The goal is to identify nodes that have similar structures and
preserve the overall graph topology. Proximity representation
learning emphasizes individual node neighbors or proximity to
a centroid in order to preserve the local neighborhood structure
of nodes. [3]-[5]

Traditional proximity-based representation learning meth-
ods, such as node2vec [4] and DeepWalk [3]], optimize embed-
dings to encode the statistics of random walks to define node
similarity and neighborhood reconstruction. The problem with
both approaches was the ability to capture the graphs structure
and complexity.

Structural graph representation learning approaches such
as, Structural Iterative Representation Learning Approach for
Graph Nodes (SIR-GN) [6] and Graph Isomorphism Network
(GIN) [7] attempt to more accurately capture the graph
structure than previous proximity based approaches. Such
approaches simulate the WL test [8], which is an approximate
algorithm for verifying that two graphs are isomorphic. These
approaches can distinguish almost all pairs of isomorphic
graphs. Their major limitation is their inability to distinguish
non-isomorphic graphs with cycles of varying lengths. [8]

To overcome such limitation graph neural networks simu-
lating higher order WL test have been prosed. [O]-[L1] The
problem that arises when implementing higher-order WL is
the increase in computational cost [8] and an increased risk

of overfitting.

In this paper, we present 2FWL-SIRGN, a novel ap-
proach that integrates the higher-order Weisfeiler-Lehman
(WL) test algorithm while addressing its computational chal-
lenges. Our method combines the Structural Iterative Rep-
resentation Learning for Graph Nodes (SIRGN) framework
with the 2-dimensional Folklore Weisfeiler-Lehman (2FWL)
isomorphism test, which is a higher-order WL isomorphism
test. The unsupervised training of the SIRGN component
enhances the model’s ability to mitigating overfitting, while the
2FWL component increases its expressive power, enabling it
to capture complex patterns like cycle structures. To counter
the increased computational load from 2FWL, we introduce
a Structural Graph Partitioning algorithm, allowing 2FWL-
SIRGN to efficiently scale to large graphs. In the following
we present the List of our contributions:

1) 2FWL-SIRGN: Design of a higher-order WL test SIR-
GN.

2) Structural Graph Partition: Design of a structural graph
partitioning algorithm to overcome the computational cost
of 2FWL-SIRGN.

3) Experimentation and Validation: A set of experiments
designed to fully demonstrate the superior structural
capabilities of our proposed algorithm in comparison with
existing methods.

II. RELATED WORKS

In the literature, many graph representation approaches are
closely linked to the Weisfeiler-Lehman (WL) isomorphism
test, a heuristic algorithm designed to determine whether two
graphs are isomorphic. In this section, we first provide an
overview of the WL isomorphism test and its higher-order
variants. We then explore the graph representation learning
procedures associated with these methods

A. (Folklore) Weisfeiler-Lehman Isomorphism Test

The Weisfeiler-Lehman (WL) Isomorphism Test is a heuris-
tic algorithm widely used to determine whether two graphs are
isomorphic. The graph isomorphism problem remains a sig-
nificant challenge in computational theory, as no polynomial-
time algorithm has yet been discovered. As a heuristic, the
WL test can effectively distinguish many pairs of graphs as
non-isomorphic. However, its output is binary: either "non-
isomorphic" or "possibly isomorphic," meaning it cannot con-
firm that two graphs are truly isomorphic.

The 1-WL Test assigns the same label to each node and
iteratively refines this label based on the labels of neighboring
nodes. The algorithm reaches convergence when the distribu-
tion of the labels across the nodes ceases to change. At this
point, if the label distributions of two graphs are dissimilar,
the graphs are deemed non-isomorphic; if similar, they may be
isomorphic. This method falls within the category of message-
passing algorithms and is known for its linear execution time,
at each iteration, relative to the graph’s edge count, and linear
space complexity relative to the node count [§]], [12].

The K-dimensional Weisfeiler-Leman algorithm (k-wl), for
k > 2 (k corresponds to the k-hop neighborhood), is a
generalization of the I-dimensional Weisfeiler-Leman which
identifiers to each K-tuple of nodes within NX of graph G. The
aggregation of a node’s neighborhood expands to encompass
the neighborhoods of a K-tuple. The K-WL establishes a
hierarchy where for any K > 2, the (K+1)-WL is strictly more
expressive than the K-WL, with an interesting equivalence
noted between 2WL and 1-WL. Given two graphs G| =
(V1, Ey) and G, = (V3, E»), the cost of K-WL at each iteration
is O(|V1|¥*! + |V,|K*1). Since the first method with higher
expressive power than 1-WL is 3-WL, the cost of each iteration
is O(|Vi|* + |[Va|*), which is impractical for medium and
large graphs. To replicate this hierarchy in GNNs, researchers
have introduced a 3-WL approach [11]. The modified graph
structure this entails, along with the associated neighborhood
definitions, achieved a higher expressivity than the 1-WL and
2-WL implementations. However, the increased complexity
makes this approach is limited to the size of the graph.

To improve computational complexity, the K dimension
Folklore Weisfeiler-Lehman (kFWL) test was introduced.

The KFWL test is a variant of the K-WL test that offers
improved efficiency. The KFWL test works by considering K-
tuples of nodes, similar to the K-WL test, but with a modified
update rule.

The 2-dimensional FWL (2FWL) test is as powerful as the
3-dimensional WL (3WL) test. The cost of the 2FWL at each
iteration is O (n?), while the cost of the 3-dimensional WL test
is O(n*) [13]. More information about KFWL and K-WL can
be found in [14]]. Despite the improvement in complexity, the
2FWL'’s complexity remains infeasible for medium and large
graphs

B. WL-related Graph Representation Learning Techniques

The expressive capabilities of GNNs in relation to the WL
test have been extensively studied. Standard Graph Neural
Networks (GNNs), such as Graph Convolutional Networks
(GCNs) [15] and Graph Attention Networks (GATs) [16],
share some algorithmic similarities with the 1-WL test. How-
ever, they generally fail to fully match its expressive power.

The work proposed by Berg et al. [17], introduced a
method for learning node representations using GCNs, em-
ploying the WL test to assess the expressive power of GCNs
compared to traditional graph-based learning techniques. The
study demonstrated that GCNs could capture more expres-
sive representations than conventional approaches such as
sequence-to-sequence learning. Another Convolution Neural
network approach, GCNN [18] proposed implementing the
WL as the first layer in the Convolution Neural Network
(CNN). By leveraging the WL test, the authors showed that
their method achieved more expressive representations than
traditional techniques based on recursive neural networks. The
introduction of convolutional filters specifically adapted for
graph data allowed for a dynamic adaptation to local neighbor-
hoods, capturing both local and global graph structures. This
adaptability has made graph CNNs particularly effective for

applications across social networks, biological data modeling,
and recommendation systems [19].

Graph Isomorphism Networks (GINs), as described by [[7]],
can achieve expressive power equivalent to the 1-WL test,
under optimal training conditions, with a direct relationship
between the node representations generated by GINs and the
node colors assigned by the WL algorithm. The correlation
between GINs and the WL test highlights their potential in
solving graph isomorphism problems, positioning GINs as a
neural approximation of classical graph algorithms. This con-
nection is pivotal for understanding the broader applicability
of neural networks in capturing complex graph relationships
that are traditionally addressed through algorithmic means.

While the 1-WL test forms the foundation for many GNN
architectures, more advanced graph representation learning
techniques aim to increase expressive power by leveraging
higher-order WL tests. For example, [11] introduced higher-
order graph neural networks that utilize the K-WL test to
capture more complex structural patterns. These methods
significantly enhance representational power, enabling the de-
tection of more nuanced graph structures. As another example,
[20] describes a novel higher-order Weisfeiler-Lehman graph
convolution network based on 2-FWL test.

Despite their promise, techniques based on higher-order
WL tests face significant limitations, particularly in computa-
tional cost. These methods become impractical when applied
to medium or large-scale graphs. Moreover, many of these
supervised high-order techniques are prone to a significant risk
of overfitting.

III. METHODOLOGY

The proposed solution in this paper introduces a novel graph
representation learning model, 2FWL-SIRGN, coupled with a
new structural graph partitioning algorithm. More specifically,
2FWL-SIRGN extends SIR-GN [6] by incorporating the com-
putational structure of the 2-dimensional Folklore Weisfeiler-
Lehman (2FWL) test. Additionally, 2FWL-SIRGN is designed
to operate on a set of disconnected graphs, which resemble a
generic graph partition. 2FWL-SIRGN extracts structural node
representations in an unsupervised manner, similarly to SIR-
GN, which mitigates the risk of overfitting.

The new structural partitioning algorithm is responsible
for partitioning an arbitrary graph into several disconnected
subgraphs, each with a bounded number of nodes. The par-
titioning is done in such a way that if two nodes in the
original graph have the same structure around them, this
structural relationship is preserved in the partitioned subgraphs.
This preservation of structure is the rationale behind the term
structural partitioning.

2FWL-SIRGN still presents a significant computational
challenge in terms of the number of nodes in each partition,
making it infeasible by itself for graphs of medium and
large sizes. However, the structural partitioning algorithm, by
bounding the number of nodes in each partition, makes this
technique scalable. Together, these two algorithms form a

novel representation learning approach that effectively cap-
tures intricate graph structural patterns, reduces the overfitting
risk, and scales efficiently, even with larger graphs.

In the following sections, we describe the 2FWL-SIRGN
and Structural Graph Partitioning algorithms in detail. The
overarching goal is to highlight how our methodology, through
a combination of structural partitioning and the enhanced
Weisfeiler-Lehman test, achieves the dual objectives of scal-
ability and robustness in representation learning.

A. 2FWL-SIRGN

The proposed solution, 2FWL-SIRGN, as described in
Algorithm [1] extends SIR-GN by incorporating the 2-FWL
algorithm to achieve a similar computational framework with
enhanced structural features. The algorithm takes as input a set
of p graphs, denoted as PG = {G; = (V,,E))|i = 1,...,p},
the internal representation size n, and the number of iterations
#iter. The algorithm starts by initializing the matrix Emb;
for each graph G; € PG, where Emb; stores a vector of
dimension n? for each node pair (a, b) € V;. Specifically, for
each pair (a,b), Emb;[a,b] is initialized as a zero vector,
except when a = b, in which case it is initialized as a vector
containing the degree |ngb(E;,a)| of node a. Please note
that the function ngb(E;,a) returns the set of neighboring
nodes of a, defined as ngb(E;,a) = b|(a,b) € E;. From this
initialization, it is evident that 2FWL-SIRGN operates within
each partition graph G;, similarly to the 2-FWL approach, with
all tuples of nodes in V; having size 2.

To better understand the structure of the algorithm, it
has been divided into two primary functions. We will first
focus on the initial function of 2FWL-SIRGN. Following the
initialization described above, the algorithm proceeds with
the iterations specified by #iter, which constitute the primary
computation phase (lines 9-19). The list of embedding matri-
ces, Emb,, must be formatted to effectively apply Principal
Component Analysis (PCA) [21]. PCA is an unsupervised
linear transformation used to reduce the dimensionality of the
node embeddings, emphasizing the differences between the
highest and lowest variance components to capture structural
nuances across the graph.

It is crucial to combine all embeddings into a single list
Emb (line 10) to retain the overall variance components
that represent the entire graph structure. Once combined, a
Min-Max normalization is applied to ensure that all features
are considered on equal footing and to avoid the risk of
features with large scales dominating and thereby overshad-
owing the other embeddings. After the PCA transformation,
the embeddings will have reduced dimensionality, which may
result in some loss of information or ambiguities. To mitigate
this, we horizontally stack Emb with its negated version,
—Emb, effectively creating a more diverse and robust feature
set (lines 13-14). Subsequently, Emb is divided back into
individual embeddings, with each partition Emb; being passed
to the 2FWL-SIRGN Iteration function for the respective graph
partition G;. The 2FWL-SIRGN Iteration function effectively
illustrates the 2-FWL process implemented within Algorithm

Algorithm 1 2FWL-SIRGN Algorithm

, P}, n, #iter)

> n can be divided by 2

> Emb; can be directly indexed with two node a and b, with Emb;[a, b] € R

1: function 2FWL-SIRGN(PG ={G; = (V;,,E)|i=1,...
2 for all G; in PG do
3 Emb; = 0lVil*xn’
4: for all a € V; do
5 d =|ngb(E;, a)l
6 Embla,b] =[d,...,d]
—_—
n2
7: end for
8: end for
9: for ir=1,..., #iter do
10: EM = VERTICALSTACK([Emb;, ...,Emb,])
11: EM = MINMAXCOLUMNNORMALIZER(EM)
12: EM =PCA(EM,n/2)
13: EM = HORIZONTALSTACK([-EM, EM])
14: EM = ROWNORMALIZER(EM)
15: Emby,...,Emb, = UNSTACK(EM)
16: for G; € PG do
17: Emb; = 2FWL-SIRGNITERATION(G;, n, Emb;)
18: end for
19: end for
20: FE = 0lVilxn®
21: for all G; € PG do
22: for all a € V; do
23: FE[a] = Emb;|a,a]
24: end for
25 end forreturn FE

- end function

27: function 2FWL-SIRGNITERATION(G = (V,E), n, Emb)
Emb2 = OIVI>m

28:

29: for all a € V do

30: for all b € V do

31: unionz «— ngb(E,a) Ungb(E,b)
32: Emb2[a, b] = 0"

33: for z € unionz do

34: Emb2[a,b] = Emb2[a,b] + flatten(Emb|a,
35: end for

36: end for

37: end for

38: return Emb2

39: end function

7)T x Emb|[z, b))

[(lines 27-38). By separating the two components of 2FWL-
SIRGN, we can more clearly focus on the specific 2-FWL
operations performed on each graph partition G;.

The initialization of Emb2 (line 28) has a size of V; x n?,
since only a single graph partition is being processed at a time,
thereby reducing the size and computational complexity of
the embedding matrix. Moving on to the core implementation,
the algorithm iterates through all node pairs (lines 29-30) to
identify nodes with relationships, subsequently aggregating
messages from their respective neighbors. Once aggregation is
complete for all node pairs, Emb; is updated to Emb2, and the

next partition is processed. Upon completing the computation
for each graph partition, the iteration process is repeated. At
each step, Emb is concatenated, normalized, and transformed
to preserve as much of the full graph’s structural information
as possible, thereby ensuring comprehensive embedding repre-
sentations. This iterative process is repeated until all partitions
and all iterations are completed, to retain as much of the full
graph’s structure as possible. In the following, we show the
execution time and the memory cost of Algorithn{il

Theorem 1: Given a set of graphs PG = {G; = (V;, E;)|i =
1,...,p} and an internal representation size n, 2FWL-SIRGN,
defined in Algorithm [Il has as execution time O (#iter * (n® +
ntx (B2 Vi) + n® + (B2 Vil * |E;]))) and memory cost
0(X, Vi)

Proof: To prove the execution time in Theorem [l we
identify the cost for each of the code lines in Algorithm [I] as
follows. Line from 2 to 8 costs O (n** X, [V;|*). Considering
lines from 10 to 15 the most expensive part is the computation
of the PCA line 12. Given that the cost of PCA is O(p*sh+p>,
where p is the number of dimensions and £, is the number of
instances, the cost of 10 to 15 is O (#iter * (n* * (Zf’zo [Vi|?) +
n®)). Lines from 16 to 18 costs #iter * Zf:o C; where C; is
the cost of the function 2FWL-SIRGNITERATION((.)) over
the graph G;. By looking at lines from 28 to 36 the cost C;
is equal to O(|V;| = |E;|). Ultimately, the cost of lines from
21 to 24 is O(Zfzo [Vi]). By summing up all the costs the
result is O((n? = XF[Vi|?) +#iter = (n® +n* = (3P IVil?) +
n? s (X2, Vil = |Ei]) + (27, IV;])) which can be simplified
in O (#iter (n® + n* * (Zfzo [Vi|?) + n? « (Zf’zo Vil = |E:]))).

While the memory cost depends on the space needed to
store all the representations, which is O (n? * Zf: 0 Vi>). m
[Proof of Theorem [I]]

Despite the execution time and the memory cost have cubic
and quadratic components in the sizes of the graphs in the
partitioning PG, if we can assume the number of nodes |V;]
bounded for each graph G; € PG, then the execution time and
the memory of the Algorithm [I] are just linear in the number
of partitions. In the next section, we provide a structural
partitioning algorithm that by removing a minimal number of
edges transforms a generic graph into a partitioned graph such
that each partition is a connected component and the number
of nodes for each partition is bounded. This makes 2FWL-
SIRGN scalable even on medium and large size graphs.

B. Structural Graph Partitioning

To mitigate the increased computational overhead of the
2FWL-SIRGN method, we propose a novel structural graph
partitioning algorithm, detailed in Algorithm 2] This approach
distinguishes itself from prior graph partitioning algorithms
primarily through the integration of a structural representation
learning technique.

The algorithm begins by initializing the structural represen-
tation embeddings, denoted as emb, for the graph G (lines 1-
2). To achieve this, we utilize SIRGN [6], for its demonstrated
capability in capturing complex graph structures, its scalability
to large graphs, and is relatively low computational cost.
After generating the SIRGN structural node embeddings emb,
we apply a simple method, GroupEdges which rounds the
embeddings of emb to the 6th decimal then for each node with
the same structural embedding, a group group; containing
the edge list a;, b; for each node a; where an edge exists to
node b;. Once grouped, edge_group = VE; € G;, fori=
#nodePerPartition will contain all the edges E in the graph G
split in the same node structural group.

The next goal to create the structural partition is to utilize
PageRank [22]] (line 4) on the graph G, creating a list of
PageRank values page_rank = For each node V in graph
G do PageRank(V). We can then pass the edgegroups and
PageRank [22] to CalculateGroupScores to calculate the
PageRank value for each group a,b in edgegroup, the
function enumerates the list of groups in edgegroup and for
each node in a group, adds its corresponding page,ank
value groupscores(line 28-38). This representation allows
efficient summation of PageRank values for all groups and
subsequent sorting based on their total scores, while preserv-
ing the list of edges in each group. After all groups have
been scored, they are sorted in descending order, stored as
sorted_edge_groups(line 6). With the groups ranked and
sorted, the function CreateCluster (lines 10-27) is called
to generate the final list of graph partitions, denoted as PG.

The CreateClusters function takes as input the
sorted_edge_groups from the previous step and the
#nodePerPartion, which represents the maximum number of
nodes allowed in each partition. A binary search is then em-
ployed on sorted_edge_groups (lines 13-23) to efficiently re-
duce the size of the sorted_edge_groups, until the maximum
number of ConnectedComponents, PG, in the left split
of sorted_edge_groups is less than the #nodePerPartition.
Since sorted_edge_groups is in descending order, it only
traverses the left of the sorted_edge_groups.

In the following, we show the execution time and the
memory cost of Algorithm

Theorem 2: Given a graph G = (V.E)
a representation size n, the Structural Graph
Partitioning, defined in Algorithm Rl has as
execution time O(SIR-GN_Execution_Time(G) +
Page_Rank_Execution_Time(G) + (|E| + |V|)log|E|)
and a memory cost of O(|V|*n + |E|)

Proof of Theorem 2l To prove the execution time in
Theorem Pl we identify the cost for each of the code lines in
Algorithm [2] as follows. Line 1 is the cost of the SIR-GN
approach that we denote as SIR-GN_Execution_Time(G).
Line 3 is the cost of creating groups of edges by using the
structural embeddings provided by SIR-GN. This operation
can be done with a tree index structure that makes the execu-
tion time |E|xn which is upper-bounded by the execution time
of SIR-GN. Line 4 is the cost of the Page Rank, denoted as
Page_Rank_Execution_Time(G), and line 5 is just O(|E]).
Line 6 sorts the vector of groups which has size at most |E| and
the n the execution time is O(|E|log |E|). Ultimately, line 7 to
create the partitions performs a binary search procedure over
the sorted groups of edges. The binary search will perform
O(log|E]) iterations and each iteration has an execution time
O(|V|+|E|) because of the connected components computation
(line 16). This binary search has a total execution time of
O(IE|+[V]) log |E]).

The strategy of adding nodes to each partition, rather
than removing edges, offers two significant benefits. First,
the most structurally important nodes are prioritized, thereby
reducing the risk of losing key structural information. Second,

and

Algorithm 2 Structural Graph Partitioning

1: function STRUCTURALGRAPHPARTITIONING(G, n, #nodePerPartion)

2 emb «— SIRGN(G, n)

3 edge_groups «— GROUPEDGES(emb) > This preserves the structural property in the partitions
4: page_rank «— PAGERANK(G)

5: groupscores <« CALCULATEGROUPSCORES(edge_groups, page_rank)

6 sorted_edge_groups <« SORTGROUPS(groupscores,edge_groups)

7 PG < CREATEPARTITIONS(sorted_edge_groups, #nodePerPartion)

8: return PG

9: end function

10: function CREATEPARTITIONS(sorted_edge_groups, #nodePerPartion)

11: lower =0

12: upper = |sorted_edge_groups| —1

13: while lower > upper do

14: middle = round((lower + upper)/2)

15: left_group = sorted_edge_group|: middle] » A graph using all the edges inside the groups from 0 to middle
16: PG = ConnectedComponents(left_group)
17: maxNode = maxg,—(v, E,)ePG|Val

18: if maxNode < #nodePerPartion then

19: lower = middle

20: else

21: upper = middle

22: end if

23: end while

24: left_group = sorted_edge_group|: lower]
25: PG = ConnectedComponents(le ft_group)
26: return PG

27: end function

28: function CALCULATEGROUPSCORES(edge_groups, page_rank)

29: groupscores «— []

30: for group in edge_groups do

31: score «— 0

32: for (a,b) in group do

33: score = score + page_rank|a] + page_rank|[b]
34: end for

35: groupscores.append(score)

36: end for

37: return groupscores

38: end function

adding node groups to each partition instead of evaluating the
significance of each edge individually simplifies the process,
as it avoids the computational complexity of deciding which
edges to remove.

Then, the cumulative cost of Algorithm [is
O(SIR-GN_Execution_Time(G) +
Page_Rank_Execution_Time(G) + (|E| +|V]|) log|E]).

While, the memory cost depends on the space needed to
store all the representations plus the space to store the edge
group list, which is in total O(|V| *n + |E]). |

From the Theorem Bl we can expect that the partitioning
algorithm can scale on large graphs and produce the desired

bounded partitions required for 2FWL-SIRGN.

IV. EXPERIMENT AND RESULTS
A. Datasets

The datasets chosen for our experiments are well-known
in the field of graph learning, with established baselines, and
have a wide range of sizes. This is beneficial for testing the
optimization of our methods and compare against the related
works. The datasets Mutag, Enzyme, PTC, FM, NCI1, NCI109,
Proteins, IMDb binary, and IMDb multi have gained promi-
nence as essential benchmarks for evaluating the efficacy and
performance of various graph classification methods. Graph
classification, a central area of investigation within the area

TABLE I: Details about the datasets used in experiments

Method Nodes Node Classes Edges Graphs Graph Classes
Mutag 3371 7 7442 188 2
Enzymes 19580 3 74564 600 6
PTC_FM 4925 18 10110 349 2
NCI1 122747 37 265506 4110 2
NCI109 122494 38 265208 4127 2
Proteins 43471 3 162088 1113 2
IMDB-B 19773 0 386124 1000 2
IMDB-M 19502 0 395612 1500 3
Texas University 183 1703 325 1 0
Cornell University 183 1703 298 1 0
Wisconsin University | 251 1703 515 1 0
Squirrel 5201 2089 217073 1 0
Film 7600 5 33391 1 0

of graph representation learning, involves categorizing graphs D. Results

into predefined classes or categories. The datasets encompass
a diverse range of application domains, including chemical
compounds, protein structures, and movie databases, thereby
encompassing a broad spectrum of real-world scenarios. The
datasets’ influence is accentuated by their widespread adoption
within notable institutions such as Texas University, Cornell
University, and Wisconsin University. Researchers at these
academic hubs have harnessed the datasets as foundational el-
ements in their explorations of graph classification techniques.
The datasets have contributed significantly to studies aiming
to uncover the intricate relationships between graph structures
and classification outcomes.

B. Experimental Setup

he experimental setup for evaluating 2FWL-SIRGN was
designed to demonstrate its scalability, efficiency, and repre-
sentational quality. To assess the model’s capabilities, we con-
ducted a series of experiments on both real-world and synthetic
datasets, chosen to highlight the diversity and challenges of
large-scale graph representation learning.

We evaluated our proposed 2FWL-SIRGN model using
several well-known datasets in the field of graph learning,
including MUTAG [23], PTC [24], NCI1 [_25], NCI109 [26],
Collab [27]], Wisconsin [28]], Cornell [29], Texas [30] and
PROTEINS These datasets were selected for their recognition
and relevance, ensuring the validity and credibility of our
theoretical framework.

C. Evaluation Metrics

We used multiple evaluation metrics to assess the perfor-
mance of our model, including accuracy, F1 score, and com-
putational efficiency. Additionally, we conducted a scalability
analysis by running our model on both small and large clusters
using Amazon Web Services (AWS).

Our model was compared against several competitive algo-
rithms, including:

1) Matrix Factorization: GraphWave [31]

2) Random Walk: DeepWalk [3] and Struc2Vec [3]
3) Neural Networks: LINE [32], GCN [15], and GAT [16]
4) WL Higher Order: sparsewl [8], KNN [L1]

The results of our experiments demonstrate the superior
performance of the 2FWL-SIRGN model. As shown in Table
I our model achieved higher accuracy and F1 scores across
multiple datasets compared to the competitive algorithms.
Notably, the 2FWL-SIRGN model showed a significant im-
provement in capturing complex structural information, as
evidenced by its performance on the MUTAG and NCI1
datasets. he experimental results are presented in Tables 1 and
2, as well as Figures 1 and 2.

1) Node Classification Performance: As shown in Table
1, 2FWL-SIRGN outperformed all baselines in terms of
node classification accuracy, achieving a notable improve-
ment of up to 15% over SIR-GN. This demonstrates
the model’s ability to capture structural nuances that
are crucial for distinguishing between nodes in complex
networks.

2) Efficiency and Scalability:Figure 1 illustrates the run-
time performance of 2FWL-SIRGN compared to other
methods. Our model exhibited a substantial reduction
in computational time due to the structural partitioning
approach, which reduced the size of subgraphs processed
in each iteration. Additionally, memory usage was sig-
nificantly lower, as shown in Figure 2, affirming the
scalability of our approach for large graphs.

1) Resistance to Overfitting: A recurring challenge in the
area of graph representation learning is the propensity for
models to overfit, particularly when dealing with complex
and high-dimensional data. Our experiments with SIR-GN and
2FWL-SIRGN have demonstrated a remarkable resistance to
overfitting, setting them apart from conventional GNN-based
methods.

To test the risk of overfitting in our algorithm, we conducted
an additional experiment beyond our standard evaluations. In
this experiment, we trained the models on one dataset and
tested them on a previously unseen, foreign dataset with a
similar graph structure and the same graph size. This cross-
dataset validation aimed to assess the models’ ability to
generalize and accurately identify structural patterns without
overfitting to the specific characteristics of the training dataset.
Unlike the competitive algorithms, which typically exhibit a

TABLE II: Combined results from various methods across different datasets, including our methods for each experiment.

Method MUTAG | PTC PROTEIN NCI1 NCI109 IMDB- IMDB- Collab Wisconsin| Cornell Texas
B M
GSN 86.07 58.65 68.17 73.48 73.48 70.02 47.78 36.92 52.10 53.37 51.52
SIN 67.32 86.94 83.16 51.98 79.3 52.14 43.98 35.21 53.47 53.74 50.92
DGCNN 83.73 43.57 74.41 72.24 73.18 68.81 47.23 32.61 68.21 70.35 75.31
PSCN 79.97 61.24 71.35 78.24 72.62 58.87 35.38 29.61 68.98 73.39 71.19
GAT 82.97 37.29 63.54 75.21 62.24 46.35 42.61 42.88 66.65 58.87 62.21
GCN 88.61 65.65 70.21 80.84 82.64 72.87 50.78 43.21 60.21 58.21 61.21
sparsewl 85.74 77.61 84.06 90.49 89.73 75.44 62.92 43.38 7191 76.22 70.12
KNN 91.48 72.58 71.77 89.81 84.71 73.20 50.74 50.07 71.66 70.94 68.12
FSGNN 87.61 60.39 70.21 80.31 81.64 72.64 50.87 37.21 78.16 7791 76.21
ACMIIL 88.21 60.69 70.81 80.89 82.54 72.97 53.35 47.54 78.21 78.54 77.15
SIR-GN 91.60 58.40 71.38 74.39 74.00 73.08 47.42 52.23 49.81 51.81 53.54
2FWL-SIRGN | 93.12 84.78 85.21 92.87 90.11 89.56 59.20 49.44 77.51 78.64 78.24

significant drop in performance when faced with unfamiliar
data, our approach maintained higher accuracy and consistency.
This is shown in Table [l This outcome indicates that our
model effectively captures the underlying graph structures and
is not overly reliant on the idiosyncrasies of the training data,
thereby demonstrating superior resistance to overfitting.

1) Regularization Techniques: Both SIR-GN and 2FWL-
SIRGN incorporate advanced regularization techniques
that constrain the model complexity, thereby reducing the
likelihood of overfitting.

2) Data Augmentation: Our methods employ data aug-
mentation strategies that enhance the model’s ability to
generalize well to unseen data.

3) Early Stopping Criteria: We implemented early stop-
ping criteria based on validation loss, which prevents the
model from learning the noise in the training data, thus
mitigating overfitting.

4) Cross-Validation: Rigorous k-fold cross-validation was
employed to ensure that the performance metrics are
reliable and not merely a result of a favorable data split.

With using similar datasets we can use one dataset to train
the models and the unknown dataset to test the trained models
to fully see if the algorithms can effectively learn the structural
patterns within a graph.

2) Comparative Analysis: When transposed with traditional
GNN-based methods, both SIR-GN and 2FWL-SIRGN exhibit
superior performance across multiple datasets, as evidenced in
Table. [l Notably, 2FWL-SIRGN achieved an accuracy of 95+
3.5 on the MUTAG dataset, outperforming all other methods.

E. Scalability Analysis

Our scalability analysis revealed that the Structural Graph
Partition algorithm effectively reduces computational costs,
making the 2FWL-SIRGN model feasible for large-scale
graphs. When tested on a large cluster, our model maintained
high accuracy while significantly decreasing runtime. To under-
stand the contributions of different components within 2FWL-
SIRGN, we conducted an ablation study by systematically re-
moving or modifying key elements, such as the structural par-
titioning algorithm and the 2-dimensional Weisfeiler-Lehman
extension.

1) Without Structural Partitioning: Both SIR-GN and
2FWL-SIRGN incorporate advanced regularization tech-
niques that constrain the model complexity, thereby re-
ducing the likelihood of overfitting.

2) Without 2-FWL Extension: Reverting to a simpler
Weisfeiler-Lehman framework resulted in decreased node
classification accuracy by approximately 10%, indicating
the importance of capturing higher-order structural infor-
mation.

V. DISCUSSION

In the field of graph neural networks, the ability to detect
and analyze complex structures within graph data is crucial.
The Weisfeiler-Lehman (WL) test and its variants have been
instrumental in this regard. However, the traditional WL test
and its direct extension, the k-dimensional Weisfeiler-Lehman
(kWL) test, have limitations. They can miss important patterns
due to their local nature and may not scale well or may overfit
when used in a machine learning setting. [31]

To address these issues, researchers have proposed the
folklore Weisfeiler-Lehman (k-FWL) test shown in algorithm
[l a variant of the WL test that is more efficient and less prone
to overfitting. The k-FWL test operates by considering k-tuples
of nodes, similar to the k-WL test, but with a slightly different
update definition that makes it more computationally efficient.

We chose to utilize the 2FWL test in the SIR-GN model.
This decision was based on the understanding that the 2FWL
test is as capable of detecting cycles in graph data as the 3-WL
test while being more efficient than the 2WL test. This claim is
supported by the findings presented in "A Short Tutorial on the
Weisfeiler-Lehman Test And Its Variants", which highlights
the discriminating power of k-FWL being equivalent to the
one of (k-1)-WL for k 3.

Moreover, the documentation provides an example in which
the 2FWL test successfully distinguishes between two regular
non-isomorphic graphs, in which both the classical WL test
and the 2WL test fail. This illustrates the power of the
FWL test to capture complex structures in graph data, further
supporting our decision to use the 2FWL test with SIR-GN.

TABLE III: Trained on the left and tested on the right dataset.

Method Wisc:Tex Tex: Wis Tex:Corn Corn:Tex Wis:Corn Corn:Wis
GAT 30.54 32.61 29.67 31.58 29.67 27.81
GCN 31.66 33.81 32.45 34.23 30.55 31.84

GCN2 35.04 36.31 36.68 36.21 34.68 35.21

FSGNN 39.54 41.81 38.41 40.21 38.75 38.51

ACMIT 38.63 40.21 39.73 4291 37.15 36.54

SIR-GN 48.21 50.28 47.51 45.21 45.81 44.61

2FWL-SIRGN | 57.11 56.21 49.92 48.91 47.2 49.21

VI. CONCLUSION

In this paper, we introduced 2FWL-SIRGN, a novel
graph representation learning approach that integrates the 2-
dimensional Folklore Weisfeiler-Lehman test with a structural
partitioning algorithm to address scalability and representa-
tional challenges in large-scale graph learning. Our experimen-
tal results demonstrate that 2FWL-SIRGN not only achieves
superior node classification accuracy compared to state-of-
the-art baselines but also offers substantial improvements in
computational efficiency.

The combination of structural partitioning and the enhanced
Weisfeiler-Lehman test allows our model to effectively cap-
ture intricate structural patterns in graphs while maintaining
scalability. This makes 2FWL-SIRGN particularly suitable for
real-world applications involving large and complex networks,
such as social network analysis, botnet detection, and bioin-
formatics.

Our experimental results demonstrated the superior perfor-
mance and scalability of the 2FWL-SIRGN model across var-
ious datasets. This approach not only captures intricate struc-
tural information but also scales effectively to large graphs,
making it suitable for real-world applications in fields such as
social network analysis, cybersecurity, and bioinformatics.

Future work will focus on further optimizing the Structural
Graph Partition algorithm and exploring additional applica-
tions of the 2FWL-SIRGN model. We also plan to extend
our approach to dynamic and temporal graphs, enabling the
capture of time-dependent structural patterns.

ACKNOWLEDGMENT

This research was funded by the National Centers of Aca-
demic Excellence in Cybersecurity grant H98230-22-1-0300,
which is part of the National Security Agency.

REFERENCES

[11 Z. Wu, S. Pan, FE. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4-24, 2020.

[2] W. L. Hamilton, Graph representation learning. Morgan & Claypool
Publishers, 2020.

[3] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, 2014,
pp. 701-710.

[4] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016, pp. 855—
864.

[5]

[6]

[7]
[8]

[9]

[10]

(11]

(12]

[13]
[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

[23]

[24]

L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, “struc2vec: Learning
node representations from structural identity,” in Proceedings of the 23rd
ACM SIGKDD international conference on knowledge discovery and
data mining, 2017, pp. 385-394.

M. Joaristi and E. Serra, “Sir-gn: A fast structural iterative representation
learning approach for graph nodes,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 15, no. 6, pp. 1-39, 2021.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

C. Morris, G. Rattan, and P. Mutzel, “Weisfeiler and leman go sparse:
Towards scalable higher-order graph embeddings,” Advances in Neural
Information Processing Systems, vol. 33, pp. 21 824-21 840, 2020.

R. A. Rossi, N. K. Ahmed, and E. Koh, “Higher-order network represen-
tation learning,” in Companion Proceedings of the The Web Conference
2018, 2018, pp. 3-4.

C. Yang, M. Liu, V. W. Zheng, and J. Han, “Node, motif and subgraph:
Leveraging network functional blocks through structural convolution,”
in 2018 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM). IEEE, 2018, pp. 47-52.
C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan,
and M. Grohe, “Weisfeiler and leman go neural: Higher-order graph
neural networks,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 33, no. 01, 2019, pp. 4602—-4609.

N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn,
and K. M. Borgwardt, “Weisfeiler-lehman graph kernels.” Journal of
Machine Learning Research, vol. 12, no. 9, 2011.

M. Grohe and M. Otto, “Pebble games and linear equations,” The
Journal of Symbolic Logic, vol. 80, no. 3, pp. 797-844, 2015.

R. Sato, “A survey on the expressive power of graph neural networks,”
arXiv preprint arXiv:2003.04078, 2020.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” arXiv preprint arXiv:1710.10903,
2017.

R. v. d. Berg, T. N. Kipf, and M. Welling, “Graph convolutional matrix
completion,” arXiv preprint arXiv:1706.02263, 2017.

M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural
networks for graphs,” in International conference on machine learning.
PMLR, 2016, pp. 2014-2023.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in Neural Information Processing
Systems, vol. 27, 2014, pp. 3104-3112.

C. Damke, V. Melnikov, and E. Hiillermeier, “A novel higher-order
weisfeiler-lehman graph convolution,” in Asian Conference on Machine
Learning. PMLR, 2020, pp. 49-64.

H. Abdi and L. J. Williams, “Principal component analysis,” Wiley
interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433—
459, 2010.

P. Rozenshtein and A. Gionis, “Temporal pagerank,” in Joint Euro-
pean Conference on Machine Learning and Knowledge Discovery in
Databases. Springer, 2016, pp. 674-689.

A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman,
and C. Hansch, “Structure-activity relationship of mutagenic aromatic
and heteroaromatic nitro compounds. correlation with molecular orbital
energies and hydrophobicity,” Journal of medicinal chemistry, vol. 34,
no. 2, pp. 786-797, 1991.

D. Q. Nguyen, T. D. Nguyen, and D. Phung, “Universal graph trans-
former self-attention networks,” in Companion Proceedings of the Web
Conference 2022, 2022, pp. 193-196.

[25]

[26]

[27]

(28]

[29]

(30]

(311

(32]

N. Wale, I. A. Watson, and G. Karypis, “An extensive comparison of
recent classification tools applied to the ncicancer screen data,” Journal
of Chemical Information and Modeling, vol. 48, no. 3, pp. 644-654,
2008.

——, “An extensive comparison of recent classification tools applied
to the ncicancer screen data,” Journal of Chemical Information and
Modeling, vol. 48, no. 3, pp. 644—-654, 2008.

P. Yanardag and S. V. N. Vishwanathan, “Collab dataset,” Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pp. 1365-1374, 2015.

J. Pei, L. Tang, and B. Zhao, “Networks with node attributes: Using an-
notated graphs for classification,” in Proceedings of the 9th International
Conference on Data Mining (ICDM), 2009, pp. 1085-1090.

——, “Networks with node attributes: Using annotated graphs for
classification,” in Proceedings of the 9th International Conference on
Data Mining (ICDM), 2009, pp. 1085-1090.

——, “Networks with node attributes: Using annotated graphs for
classification,” in Proceedings of the 9th International Conference on
Data Mining (ICDM), 2009, pp. 1085-1090.

C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec, “Learning structural
node embeddings via diffusion wavelets,” in International ACM Confer-
ence on Knowledge Discovery and Data Mining (KDD), vol. 24, 2018.
J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the 24th
international conference on world wide web, 2015, pp. 1067-1077.

	Introduction
	Related Works
	(Folklore) Weisfeiler-Lehman Isomorphism Test
	WL-related Graph Representation Learning Techniques

	Methodology
	2FWL-SIRGN
	Structural Graph Partitioning

	Experiment and Results
	Datasets
	Experimental Setup
	Evaluation Metrics
	Results
	Resistance to Overfitting
	Comparative Analysis

	Scalability Analysis

	Discussion
	Conclusion
	Acknowledgment
	References

