
2FWL-SIRGN A Scalable Higher-Order Graph

Representation Learning Approach*
* Via 2-dimensional Folklore Weisfeiler Lehman and Structural Graph Partitioning

Justin Carpenter

dept. Computer Science

Boise State University

Boise, Idaho, Country

justincarpenter836@u.boisestate.edu

Edoardo Serra

dept. Computer Science

Boise State University

Boise, Idaho, Country

edoardoserra@boisestate.edu

Abstract—Graph representation learning has numerous appli-
cations, ranging from social networks to bioinformatics, with
a major focus on Graph Neural Networks (GNNs). However,
many GNN models face challenges in capturing intricate graph
structures, such as cycles, and are prone to overfitting and high
computational costs, limiting their scalability on medium to big
graphs.

In this paper, we propose 2FWL-SIRGN, a novel approach that
integrates higher-order Weisfeiler-Lehman (WL) test algorithm
while mitigating its computational challenges. Our method com-
bines the Structural Iterative Representation Learning for Graph
Nodes (SIRGN) framework with the 2-dimensional Folklore
Weisfeiler-Lehman (2FWL) isomorphism test. The unsupervised
training of the SIRGN component improves the model’s resis-
tance to overfitting, while the 2FWL component enhances its
expressive power, enabling it to capture complex patterns, such
as cycle structures. However, the inclusion of 2FWL increases
computational overhead. To address this, we introduce a Struc-
tural Graph Partitioning algorithm, which allows 2FWL-SIRGN
to scale efficiently to big graphs.

Extensive experiments demonstrate that 2FWL-SIRGN outper-
forms state-of-the-art methods by addressing key challenges in
graph representation learning. Our model captures richer struc-
tural information while maintaining computational efficiency,
surpassing other higher-order WL approaches. Additionally, our
partitioning strategy enables 2FWL-SIRGN to effectively handle
large-scale graphs, and its inherent resistance to overfitting
addresses a common limitation of GNNs. These advancements
position 2FWL-SIRGN as a robust solution for real-world appli-
cations where both scalability and accuracy are critical.

Index Terms—Higher-Order, Graph Representation Learning,
Structural Graph Partitioning, Folklore Weisfeiler-Lehman

I. INTRODUCTION

Graphs are powerful data structures that represent entities

as nodes and the relationships between them as edges. Graph-

structured data is one of the most ubiquitous forms of struc-

tured data used in machine learning approaches, such as graph

neural networks (GNNs) and graph representation learning. In

order to utilize graph-structured data, many studies have been

done to transform these complex structures into a format that

can be easily processed by machine learning algorithms while

preserving the graph’s informational content. [1]

Recent years have seen a surge in research on graph

representation learning techniques in various machine learning

tasks such as node classification, link prediction, and graph

classification. Instead of extracting hand-engineered features,

graph representation learning aims to learn representations that

encode structural information about the graph. [2]

There are two well explored concepts within graph rep-

resentation learning, structural and proximity, each with the

same end goal to transform a graphs informational content

into a usable format. Although similar end goal, the two

concepts differ from one another on capturing different types

of information within the graph. Structural representation

learning focuses on capturing the positions of nodes within

the entire graph, irrespective of their local neighborhoods.

The goal is to identify nodes that have similar structures and

preserve the overall graph topology. Proximity representation

learning emphasizes individual node neighbors or proximity to

a centroid in order to preserve the local neighborhood structure

of nodes. [3]–[5]

Traditional proximity-based representation learning meth-

ods, such as node2vec [4] and DeepWalk [3], optimize embed-

dings to encode the statistics of random walks to define node

similarity and neighborhood reconstruction. The problem with

both approaches was the ability to capture the graphs structure

and complexity.

Structural graph representation learning approaches such

as, Structural Iterative Representation Learning Approach for

Graph Nodes (SIR-GN) [6] and Graph Isomorphism Network

(GIN) [7] attempt to more accurately capture the graph

structure than previous proximity based approaches. Such

approaches simulate the WL test [8], which is an approximate

algorithm for verifying that two graphs are isomorphic. These

approaches can distinguish almost all pairs of isomorphic

graphs. Their major limitation is their inability to distinguish

non-isomorphic graphs with cycles of varying lengths. [8]

To overcome such limitation graph neural networks simu-

lating higher order WL test have been prosed. [9]–[11] The

problem that arises when implementing higher-order WL is

the increase in computational cost [8] and an increased risk

of overfitting.

In this paper, we present 2FWL-SIRGN, a novel ap-

proach that integrates the higher-order Weisfeiler-Lehman

(WL) test algorithm while addressing its computational chal-

lenges. Our method combines the Structural Iterative Rep-

resentation Learning for Graph Nodes (SIRGN) framework

with the 2-dimensional Folklore Weisfeiler-Lehman (2FWL)

isomorphism test, which is a higher-order WL isomorphism

test. The unsupervised training of the SIRGN component

enhances the model’s ability to mitigating overfitting, while the

2FWL component increases its expressive power, enabling it

to capture complex patterns like cycle structures. To counter

the increased computational load from 2FWL, we introduce

a Structural Graph Partitioning algorithm, allowing 2FWL-

SIRGN to efficiently scale to large graphs. In the following

we present the List of our contributions:

1) 2FWL-SIRGN: Design of a higher-order WL test SIR-

GN.

2) Structural Graph Partition: Design of a structural graph

partitioning algorithm to overcome the computational cost

of 2FWL-SIRGN.

3) Experimentation and Validation: A set of experiments

designed to fully demonstrate the superior structural

capabilities of our proposed algorithm in comparison with

existing methods.

II. RELATED WORKS

In the literature, many graph representation approaches are

closely linked to the Weisfeiler-Lehman (WL) isomorphism

test, a heuristic algorithm designed to determine whether two

graphs are isomorphic. In this section, we first provide an

overview of the WL isomorphism test and its higher-order

variants. We then explore the graph representation learning

procedures associated with these methods

A. (Folklore) Weisfeiler-Lehman Isomorphism Test

The Weisfeiler-Lehman (WL) Isomorphism Test is a heuris-

tic algorithm widely used to determine whether two graphs are

isomorphic. The graph isomorphism problem remains a sig-

nificant challenge in computational theory, as no polynomial-

time algorithm has yet been discovered. As a heuristic, the

WL test can effectively distinguish many pairs of graphs as

non-isomorphic. However, its output is binary: either "non-

isomorphic" or "possibly isomorphic," meaning it cannot con-

firm that two graphs are truly isomorphic.

The 1-WL Test assigns the same label to each node and

iteratively refines this label based on the labels of neighboring

nodes. The algorithm reaches convergence when the distribu-

tion of the labels across the nodes ceases to change. At this

point, if the label distributions of two graphs are dissimilar,

the graphs are deemed non-isomorphic; if similar, they may be

isomorphic. This method falls within the category of message-

passing algorithms and is known for its linear execution time,

at each iteration, relative to the graph’s edge count, and linear

space complexity relative to the node count [8], [12].

The -dimensional Weisfeiler-Leman algorithm (:-wl), for

: > 2 (: corresponds to the :-hop neighborhood), is a

generalization of the 1-dimensional Weisfeiler-Leman which

identifiers to each -tuple of nodes within # of graph �. The

aggregation of a node’s neighborhood expands to encompass

the neighborhoods of a -tuple. The -WL establishes a

hierarchy where for any > 2, the (+1)-WL is strictly more

expressive than the -WL, with an interesting equivalence

noted between 2WL and 1-WL. Given two graphs �1 =

(+1, �1) and �2 = (+2, �2), the cost of -WL at each iteration

is $ (|+1 |
 +1 + |+2 |

 +1). Since the first method with higher

expressive power than 1-WL is 3-WL, the cost of each iteration

is $ (|+1 |
4 + |+2 |

4), which is impractical for medium and

large graphs. To replicate this hierarchy in GNNs, researchers

have introduced a 3-WL approach [11]. The modified graph

structure this entails, along with the associated neighborhood

definitions, achieved a higher expressivity than the 1-WL and

2-WL implementations. However, the increased complexity

makes this approach is limited to the size of the graph.

To improve computational complexity, the dimension

Folklore Weisfeiler-Lehman (:FWL) test was introduced.

The FWL test is a variant of the -WL test that offers

improved efficiency. The FWL test works by considering -

tuples of nodes, similar to the -WL test, but with a modified

update rule.

The 2-dimensional FWL (2FWL) test is as powerful as the

3-dimensional WL (3WL) test. The cost of the 2FWL at each

iteration is $ (=3), while the cost of the 3-dimensional WL test

is $ (=4) [13]. More information about FWL and -WL can

be found in [14]. Despite the improvement in complexity, the

2FWL’s complexity remains infeasible for medium and large

graphs

B. WL-related Graph Representation Learning Techniques

The expressive capabilities of GNNs in relation to the WL

test have been extensively studied. Standard Graph Neural

Networks (GNNs), such as Graph Convolutional Networks

(GCNs) [15] and Graph Attention Networks (GATs) [16],

share some algorithmic similarities with the 1-WL test. How-

ever, they generally fail to fully match its expressive power.

The work proposed by Berg et al. [17], introduced a

method for learning node representations using GCNs, em-

ploying the WL test to assess the expressive power of GCNs

compared to traditional graph-based learning techniques. The

study demonstrated that GCNs could capture more expres-

sive representations than conventional approaches such as

sequence-to-sequence learning. Another Convolution Neural

network approach, GCNN [18] proposed implementing the

WL as the first layer in the Convolution Neural Network

(CNN). By leveraging the WL test, the authors showed that

their method achieved more expressive representations than

traditional techniques based on recursive neural networks. The

introduction of convolutional filters specifically adapted for

graph data allowed for a dynamic adaptation to local neighbor-

hoods, capturing both local and global graph structures. This

adaptability has made graph CNNs particularly effective for

applications across social networks, biological data modeling,

and recommendation systems [19].

Graph Isomorphism Networks (GINs), as described by [7],

can achieve expressive power equivalent to the 1-WL test,

under optimal training conditions, with a direct relationship

between the node representations generated by GINs and the

node colors assigned by the WL algorithm. The correlation

between GINs and the WL test highlights their potential in

solving graph isomorphism problems, positioning GINs as a

neural approximation of classical graph algorithms. This con-

nection is pivotal for understanding the broader applicability

of neural networks in capturing complex graph relationships

that are traditionally addressed through algorithmic means.

While the 1-WL test forms the foundation for many GNN

architectures, more advanced graph representation learning

techniques aim to increase expressive power by leveraging

higher-order WL tests. For example, [11] introduced higher-

order graph neural networks that utilize the K-WL test to

capture more complex structural patterns. These methods

significantly enhance representational power, enabling the de-

tection of more nuanced graph structures. As another example,

[20] describes a novel higher-order Weisfeiler-Lehman graph

convolution network based on 2-FWL test.

Despite their promise, techniques based on higher-order

WL tests face significant limitations, particularly in computa-

tional cost. These methods become impractical when applied

to medium or large-scale graphs. Moreover, many of these

supervised high-order techniques are prone to a significant risk

of overfitting.

III. METHODOLOGY

The proposed solution in this paper introduces a novel graph

representation learning model, 2FWL-SIRGN, coupled with a

new structural graph partitioning algorithm. More specifically,

2FWL-SIRGN extends SIR-GN [6] by incorporating the com-

putational structure of the 2-dimensional Folklore Weisfeiler-

Lehman (2FWL) test. Additionally, 2FWL-SIRGN is designed

to operate on a set of disconnected graphs, which resemble a

generic graph partition. 2FWL-SIRGN extracts structural node

representations in an unsupervised manner, similarly to SIR-

GN, which mitigates the risk of overfitting.

The new structural partitioning algorithm is responsible

for partitioning an arbitrary graph into several disconnected

subgraphs, each with a bounded number of nodes. The par-

titioning is done in such a way that if two nodes in the

original graph have the same structure around them, this

structural relationship is preserved in the partitioned subgraphs.

This preservation of structure is the rationale behind the term

structural partitioning.

2FWL-SIRGN still presents a significant computational

challenge in terms of the number of nodes in each partition,

making it infeasible by itself for graphs of medium and

large sizes. However, the structural partitioning algorithm, by

bounding the number of nodes in each partition, makes this

technique scalable. Together, these two algorithms form a

novel representation learning approach that effectively cap-

tures intricate graph structural patterns, reduces the overfitting

risk, and scales efficiently, even with larger graphs.

In the following sections, we describe the 2FWL-SIRGN

and Structural Graph Partitioning algorithms in detail. The

overarching goal is to highlight how our methodology, through

a combination of structural partitioning and the enhanced

Weisfeiler-Lehman test, achieves the dual objectives of scal-

ability and robustness in representation learning.

A. 2FWL-SIRGN

The proposed solution, 2FWL-SIRGN, as described in

Algorithm 1, extends SIR-GN by incorporating the 2-FWL

algorithm to achieve a similar computational framework with

enhanced structural features. The algorithm takes as input a set

of ? graphs, denoted as %� = {�8 = (+8 , �8) |8 = 1, . . . , ?},

the internal representation size =, and the number of iterations

#8C4A . The algorithm starts by initializing the matrix �<18
for each graph �8 ∈ %�, where �<18 stores a vector of

dimension =2 for each node pair (0, 1) ∈ +8 . Specifically, for

each pair (0, 1), �<18 [0, 1] is initialized as a zero vector,

except when 0 = 1, in which case it is initialized as a vector

containing the degree |=61(�8 , 0) | of node 0. Please note

that the function =61(�8 , 0) returns the set of neighboring

nodes of 0, defined as =61(�8 , 0) = 1 | (0, 1) ∈ �8 . From this

initialization, it is evident that 2FWL-SIRGN operates within

each partition graph �8 , similarly to the 2-FWL approach, with

all tuples of nodes in +8 having size 2.

To better understand the structure of the algorithm, it

has been divided into two primary functions. We will first

focus on the initial function of 2FWL-SIRGN. Following the

initialization described above, the algorithm proceeds with

the iterations specified by #8C4A , which constitute the primary

computation phase (lines 9-19). The list of embedding matri-

ces, �<1? , must be formatted to effectively apply Principal

Component Analysis (%��) [21]. %�� is an unsupervised

linear transformation used to reduce the dimensionality of the

node embeddings, emphasizing the differences between the

highest and lowest variance components to capture structural

nuances across the graph.

It is crucial to combine all embeddings into a single list

�<1 (line 10) to retain the overall variance components

that represent the entire graph structure. Once combined, a

Min-Max normalization is applied to ensure that all features

are considered on equal footing and to avoid the risk of

features with large scales dominating and thereby overshad-

owing the other embeddings. After the %�� transformation,

the embeddings will have reduced dimensionality, which may

result in some loss of information or ambiguities. To mitigate

this, we horizontally stack �<1 with its negated version,

−�<1, effectively creating a more diverse and robust feature

set (lines 13-14). Subsequently, �<1 is divided back into

individual embeddings, with each partition �<18 being passed

to the 2FWL-SIRGN Iteration function for the respective graph

partition �8 . The 2FWL-SIRGN Iteration function effectively

illustrates the 2-FWL process implemented within Algorithm

Algorithm 1 2FWL-SIRGN Algorithm

1: function 2FWL-SIRGN(%� = {�8 = (+8 , �8) |8 = 1, . . . , ?}, =, #8C4A) ⊲ = can be divided by 2

2: for all �8 in %� do

3: �<18 = 0 |+8 |
2×=2

4: for all 0 ∈ +8 do

5: 3 = |=61(�8 , 0) |

6: �<1[0, 1] = [3, . . . , 3
︸ ︷︷ ︸

=2

] ⊲ �<18 can be directly indexed with two node 0 and 1, with �<18 [0, 1] ∈ ℜ
=2

7: end for

8: end for

9: for 8C = 1, . . . , #8C4A do

10: �" = VERTICALSTACK([�<11, . . . , �<1?])

11: �" = MINMAXCOLUMNNORMALIZER(�")

12: �" = PCA(�", =/2)

13: �" = HORIZONTALSTACK([−�", �"])

14: �" = ROWNORMALIZER(�")

15: �<11, . . . , �<1? = UNSTACK(�")

16: for �8 ∈ %� do

17: �<18 = 2FWL-SIRGNITERATION(�8 , =, �<18)

18: end for

19: end for

20: �� = 0 |+8 |×=
2

21: for all �8 ∈ %� do

22: for all 0 ∈ +8 do

23: �� [0] = �<18 [0, 0]

24: end for

25: end forreturn ��

26: end function

27: function 2FWL-SIRGNITERATION(� = (+, �), =, �<1)

28: �<12 = 0 |+ |
2×=2

29: for all 0 ∈ + do

30: for all 1 ∈ + do

31: D=8>=I ← =61(�, 0) ∪ =61(�, 1)

32: �<12[0, 1] = 0=
2

33: for I ∈ D=8>=I do

34: �<12[0, 1] = �<12[0, 1] + flatten(�<1[0, I]) × �<1[I, 1])

35: end for

36: end for

37: end for

38: return �<12

39: end function

1 (lines 27-38). By separating the two components of 2FWL-

SIRGN, we can more clearly focus on the specific 2-FWL

operations performed on each graph partition �8 .

The initialization of �<12 (line 28) has a size of +8 × =
2,

since only a single graph partition is being processed at a time,

thereby reducing the size and computational complexity of

the embedding matrix. Moving on to the core implementation,

the algorithm iterates through all node pairs (lines 29-30) to

identify nodes with relationships, subsequently aggregating

messages from their respective neighbors. Once aggregation is

complete for all node pairs, �<11 is updated to �<12, and the

next partition is processed. Upon completing the computation

for each graph partition, the iteration process is repeated. At

each step, �<1 is concatenated, normalized, and transformed

to preserve as much of the full graph’s structural information

as possible, thereby ensuring comprehensive embedding repre-

sentations. This iterative process is repeated until all partitions

and all iterations are completed, to retain as much of the full

graph’s structure as possible. In the following, we show the

execution time and the memory cost of Algorithm1.

Theorem 1: Given a set of graphs %� = {�8 = (+8 , �8) |8 =

1, . . . , ?} and an internal representation size =, 2FWL-SIRGN,

defined in Algorithm 1, has as execution time $ (#8C4A ∗ (=6 +

=4 ∗ (
∑?

8=0
|+8 |

2) + =2 ∗ (
∑?

8=0
|+8 | ∗ |�8 |))) and memory cost

$ (
∑?

8=0
|+8 |)

Proof: To prove the execution time in Theorem 1, we

identify the cost for each of the code lines in Algorithm 1 as

follows. Line from 2 to 8 costs $ (=2∗
∑?

8=0
|+8 |

2). Considering

lines from 10 to 15 the most expensive part is the computation

of the PCA line 12. Given that the cost of PCA is $ (?2∗ℎ+?3,

where ? is the number of dimensions and ℎ, is the number of

instances, the cost of 10 to 15 is $ (#8C4A ∗ (=4 ∗ (
∑?

8=0
|+8 |

2) +

=6)). Lines from 16 to 18 costs #8C4A ∗
∑?

8=0
�8 where �8 is

the cost of the function 2FWL-SIRGNITERATION((.)) over

the graph �8 . By looking at lines from 28 to 36 the cost �8
is equal to $ (|+8 | ∗ |�8 |). Ultimately, the cost of lines from

21 to 24 is $ (
∑?

8=0
|+8 |). By summing up all the costs the

result is $ ((=2 ∗
∑?

8=0
|+8 |

2) + #8C4A ∗ (=6 + =4 ∗ (
∑?

8=0
|+8 |

2) +

=2 ∗ (
∑?

8=0
|+8 | ∗ |�8 |)) + (

∑?

8=0
|+8 |)) which can be simplified

in $ (#8C4A ∗ (=6 + =4 ∗ (
∑?

8=0
|+8 |

2) + =2 ∗ (
∑?

8=0
|+8 | ∗ |�8 |))).

While the memory cost depends on the space needed to

store all the representations, which is $ (=2 ∗
∑?

8=0
|+8 |

2).

[Proof of Theorem 1]

Despite the execution time and the memory cost have cubic

and quadratic components in the sizes of the graphs in the

partitioning %�, if we can assume the number of nodes |+8 |

bounded for each graph �8 ∈ %�, then the execution time and

the memory of the Algorithm 1 are just linear in the number

of partitions. In the next section, we provide a structural

partitioning algorithm that by removing a minimal number of

edges transforms a generic graph into a partitioned graph such

that each partition is a connected component and the number

of nodes for each partition is bounded. This makes 2FWL-

SIRGN scalable even on medium and large size graphs.

B. Structural Graph Partitioning

To mitigate the increased computational overhead of the

2FWL-SIRGN method, we propose a novel structural graph

partitioning algorithm, detailed in Algorithm 2. This approach

distinguishes itself from prior graph partitioning algorithms

primarily through the integration of a structural representation

learning technique.

The algorithm begins by initializing the structural represen-

tation embeddings, denoted as 4<1, for the graph � (lines 1-

2). To achieve this, we utilize SIRGN [6], for its demonstrated

capability in capturing complex graph structures, its scalability

to large graphs, and is relatively low computational cost.

After generating the SIRGN structural node embeddings 4<1,

we apply a simple method, GroupEdges which rounds the

embeddings of 4<1 to the 6th decimal then for each node with

the same structural embedding, a group 6A>D?8 containing

the edge list 08 , 18 for each node 08 where an edge exists to

node 18 . Once grouped, 4364_6A>D? = ∀�8 ∈ �8 , for 8 =

#nodePerPartition will contain all the edges � in the graph �

split in the same node structural group.

The next goal to create the structural partition is to utilize

%064'0=: [22] (line 4) on the graph �, creating a list of

PageRank values ?064_A0=: = For each node + in graph

� do PageRank(+). We can then pass the 43646A>D?B and

%064'0=: [22] to CalculateGroupScores to calculate the

%064'0=: value for each 6A>D? 0, 1 in 43646A>D?, the

function enumerates the list of groups in 43646A>D? and for

each =>34 in a 6A>D?, adds its corresponding ?064A0=:

value 6A>D?B2>A4B(line 28-38). This representation allows

efficient summation of %064'0=: values for all groups and

subsequent sorting based on their total scores, while preserv-

ing the list of edges in each group. After all groups have

been scored, they are sorted in descending order, stored as

B>AC43_4364_6A>D?B(line 6). With the groups ranked and

sorted, the function CreateCluster (lines 10-27) is called

to generate the final list of graph partitions, denoted as %�.

The CreateClusters function takes as input the

B>AC43_4364_6A>D?B from the previous step and the

#=>34%4A%0AC8>=, which represents the maximum number of

nodes allowed in each partition. A binary search is then em-

ployed on B>AC43_4364_6A>D?B (lines 13-23) to efficiently re-

duce the size of the B>AC43_4364_6A>D?B, until the maximum

number of ConnectedComponents, %�, in the left split

of B>AC43_4364_6A>D?B is less than the #=>34%4A%0AC8C8>=.

Since B>AC43_4364_6A>D?B is in descending order, it only

traverses the left of the B>AC43_4364_6A>D?B.

In the following, we show the execution time and the

memory cost of Algorithm 2.

Theorem 2: Given a graph � = (+.�) and

a representation size =, the Structural Graph

Partitioning, defined in Algorithm 2, has as

execution time $ (SIR-GN_�G42DC8>=_)8<4(�) +

%064_'0=:_�G42DC8>=_)8<4(�) + (|� | + |+ |) log |� |)

and a memory cost of $ (|+ | ∗ = + |� |)

Proof of Theorem 2: To prove the execution time in

Theorem 2, we identify the cost for each of the code lines in

Algorithm 2 as follows. Line 1 is the cost of the SIR-GN

approach that we denote as SIR-GN_�G42DC8>=_)8<4(�).

Line 3 is the cost of creating groups of edges by using the

structural embeddings provided by SIR-GN. This operation

can be done with a tree index structure that makes the execu-

tion time |� | ∗= which is upper-bounded by the execution time

of SIR-GN. Line 4 is the cost of the Page Rank, denoted as

%064_'0=:_�G42DC8>=_)8<4(�), and line 5 is just $ (|� |).

Line 6 sorts the vector of groups which has size at most |� | and

the n the execution time is $ (|� | log |� |). Ultimately, line 7 to

create the partitions performs a binary search procedure over

the sorted groups of edges. The binary search will perform

$ (log |� |) iterations and each iteration has an execution time

$ (|+ |+|� |) because of the connected components computation

(line 16). This binary search has a total execution time of

$ (|� | + |+ |) log |� |).

The strategy of adding nodes to each partition, rather

than removing edges, offers two significant benefits. First,

the most structurally important nodes are prioritized, thereby

reducing the risk of losing key structural information. Second,

Algorithm 2 Structural Graph Partitioning

1: function STRUCTURALGRAPHPARTITIONING(G, n, #nodePerPartion)

2: 4<1 ← SIRGN(�, =)

3: 4364_6A>D?B← GROUPEDGES(4<1) ⊲ This preserves the structural property in the partitions

4: ?064_A0=: ← PAGERANK(�)

5: 6A>D?B2>A4B← CALCULATEGROUPSCORES(4364_6A>D?B, ?064_A0=:)

6: B>AC43_4364_6A>D?B← SORTGROUPS(6A>D?B2>A4B, 4364_6A>D?B)

7: %� ← CREATEPARTITIONS(B>AC43_4364_6A>D?B, #=>34%4A%0AC8>=)

8: return %�

9: end function

10: function CREATEPARTITIONS(sorted_edge_groups, #nodePerPartion)

11: ;>F4A = 0

12: D??4A = |B>AC43_4364_6A>D?B | − 1

13: while ;>F4A > D??4A do

14: <833;4 = A>D=3 ((;>F4A + D??4A)/2)

15: ;4 5 C_6A>D? = B>AC43_4364_6A>D?[: <833;4] ⊲ A graph using all the edges inside the groups from 0 to <833;4

16: %� = �>==42C43�><?>=4=CB(;4 5 C_6A>D?)

17: <0G#>34 = <0G�0=(+0 ,�0) ∈%� |+0 |

18: if <0G#>34 ≤ #=>34%4A%0AC8>= then

19: ;>F4A = <833;4

20: else

21: D??4A = <833;4

22: end if

23: end while

24: ;4 5 C_6A>D? = B>AC43_4364_6A>D?[: ;>F4A]

25: %� = �>==42C43�><?>=4=CB(;4 5 C_6A>D?)

26: return %�

27: end function

28: function CALCULATEGROUPSCORES(edge_groups, page_rank)

29: 6A>D?B2>A4B← []

30: for 6A>D? in 4364_6A>D?B do

31: B2>A4 ← 0

32: for (0, 1) in 6A>D? do

33: B2>A4 = B2>A4 + ?064_A0=: [0] + ?064_A0=: [1]

34: end for

35: 6A>D?B2>A4B.0??4=3 (B2>A4)

36: end for

37: return 6A>D?B2>A4B

38: end function

adding node groups to each partition instead of evaluating the

significance of each edge individually simplifies the process,

as it avoids the computational complexity of deciding which

edges to remove.

Then, the cumulative cost of Algorithm 2 is

$ (SIR-GN_�G42DC8>=_)8<4(�) +

%064_'0=:_�G42DC8>=_)8<4(�) + (|� | + |+ |) log |� |).

While, the memory cost depends on the space needed to

store all the representations plus the space to store the edge

group list, which is in total $ (|+ | ∗ = + |� |).

From the Theorem 2, we can expect that the partitioning

algorithm can scale on large graphs and produce the desired

bounded partitions required for 2FWL-SIRGN.

IV. EXPERIMENT AND RESULTS

A. Datasets

The datasets chosen for our experiments are well-known

in the field of graph learning, with established baselines, and

have a wide range of sizes. This is beneficial for testing the

optimization of our methods and compare against the related

works. The datasets Mutag, Enzyme, PTC, FM, NCI1, NCI109,

Proteins, IMDb binary, and IMDb multi have gained promi-

nence as essential benchmarks for evaluating the efficacy and

performance of various graph classification methods. Graph

classification, a central area of investigation within the area

TABLE I: Details about the datasets used in experiments

Method Nodes Node Classes Edges Graphs Graph Classes

Mutag 3371 7 7442 188 2

Enzymes 19580 3 74564 600 6

PTC_FM 4925 18 10110 349 2

NCI1 122747 37 265506 4110 2

NCI109 122494 38 265208 4127 2

Proteins 43471 3 162088 1113 2

IMDB-B 19773 0 386124 1000 2

IMDB-M 19502 0 395612 1500 3

Texas University 183 1703 325 1 0

Cornell University 183 1703 298 1 0

Wisconsin University 251 1703 515 1 0

Squirrel 5201 2089 217073 1 0

Film 7600 5 33391 1 0

of graph representation learning, involves categorizing graphs

into predefined classes or categories. The datasets encompass

a diverse range of application domains, including chemical

compounds, protein structures, and movie databases, thereby

encompassing a broad spectrum of real-world scenarios. The

datasets’ influence is accentuated by their widespread adoption

within notable institutions such as Texas University, Cornell

University, and Wisconsin University. Researchers at these

academic hubs have harnessed the datasets as foundational el-

ements in their explorations of graph classification techniques.

The datasets have contributed significantly to studies aiming

to uncover the intricate relationships between graph structures

and classification outcomes.

B. Experimental Setup

he experimental setup for evaluating 2FWL-SIRGN was

designed to demonstrate its scalability, efficiency, and repre-

sentational quality. To assess the model’s capabilities, we con-

ducted a series of experiments on both real-world and synthetic

datasets, chosen to highlight the diversity and challenges of

large-scale graph representation learning.

We evaluated our proposed 2FWL-SIRGN model using

several well-known datasets in the field of graph learning,

including MUTAG [23], PTC [24], NCI1 [25], NCI109 [26],

Collab [27], Wisconsin [28], Cornell [29], Texas [30] and

PROTEINS These datasets were selected for their recognition

and relevance, ensuring the validity and credibility of our

theoretical framework.

C. Evaluation Metrics

We used multiple evaluation metrics to assess the perfor-

mance of our model, including accuracy, F1 score, and com-

putational efficiency. Additionally, we conducted a scalability

analysis by running our model on both small and large clusters

using Amazon Web Services (AWS).

Our model was compared against several competitive algo-

rithms, including:

1) Matrix Factorization: GraphWave [31]

2) Random Walk: DeepWalk [3] and Struc2Vec [5]

3) Neural Networks: LINE [32], GCN [15], and GAT [16]

4) WL Higher Order: sparsewl [8], KNN [11]

D. Results

The results of our experiments demonstrate the superior

performance of the 2FWL-SIRGN model. As shown in Table

II, our model achieved higher accuracy and F1 scores across

multiple datasets compared to the competitive algorithms.

Notably, the 2FWL-SIRGN model showed a significant im-

provement in capturing complex structural information, as

evidenced by its performance on the MUTAG and NCI1

datasets. he experimental results are presented in Tables 1 and

2, as well as Figures 1 and 2.

1) Node Classification Performance: As shown in Table

1, 2FWL-SIRGN outperformed all baselines in terms of

node classification accuracy, achieving a notable improve-

ment of up to 15% over SIR-GN. This demonstrates

the model’s ability to capture structural nuances that

are crucial for distinguishing between nodes in complex

networks.

2) Efficiency and Scalability:Figure 1 illustrates the run-

time performance of 2FWL-SIRGN compared to other

methods. Our model exhibited a substantial reduction

in computational time due to the structural partitioning

approach, which reduced the size of subgraphs processed

in each iteration. Additionally, memory usage was sig-

nificantly lower, as shown in Figure 2, affirming the

scalability of our approach for large graphs.

1) Resistance to Overfitting: A recurring challenge in the

area of graph representation learning is the propensity for

models to overfit, particularly when dealing with complex

and high-dimensional data. Our experiments with SIR-GN and

2FWL-SIRGN have demonstrated a remarkable resistance to

overfitting, setting them apart from conventional GNN-based

methods.

To test the risk of overfitting in our algorithm, we conducted

an additional experiment beyond our standard evaluations. In

this experiment, we trained the models on one dataset and

tested them on a previously unseen, foreign dataset with a

similar graph structure and the same graph size. This cross-

dataset validation aimed to assess the models’ ability to

generalize and accurately identify structural patterns without

overfitting to the specific characteristics of the training dataset.

Unlike the competitive algorithms, which typically exhibit a

TABLE II: Combined results from various methods across different datasets, including our methods for each experiment.

Method MUTAG PTC PROTEINSNCI1 NCI109 IMDB-

B

IMDB-

M

Collab Wisconsin Cornell Texas

GSN 86.07 58.65 68.17 73.48 73.48 70.02 47.78 36.92 52.10 53.37 51.52

SIN 67.32 86.94 83.16 51.98 79.3 52.14 43.98 35.21 53.47 53.74 50.92

DGCNN 83.73 43.57 74.41 72.24 73.18 68.81 47.23 32.61 68.21 70.35 75.31

PSCN 79.97 61.24 71.35 78.24 72.62 58.87 35.38 29.61 68.98 73.39 71.19

GAT 82.97 37.29 63.54 75.21 62.24 46.35 42.61 42.88 66.65 58.87 62.21

GCN 88.61 65.65 70.21 80.84 82.64 72.87 50.78 43.21 60.21 58.21 61.21

sparsewl 85.74 77.61 84.06 90.49 89.73 75.44 62.92 43.38 71.91 76.22 70.12

KNN 91.48 72.58 77.77 89.81 84.71 73.20 50.74 50.07 71.66 70.94 68.12

FSGNN 87.61 60.39 70.21 80.31 81.64 72.64 50.87 37.21 78.16 77.91 76.21

ACMII 88.21 60.69 70.81 80.89 82.54 72.97 53.35 47.54 78.21 78.54 77.15

SIR-GN 91.60 58.40 71.38 74.39 74.00 73.08 47.42 52.23 49.81 51.81 53.54

2FWL-SIRGN 93.12 84.78 85.21 92.87 90.11 89.56 59.20 49.44 77.51 78.64 78.24

significant drop in performance when faced with unfamiliar

data, our approach maintained higher accuracy and consistency.

This is shown in Table III This outcome indicates that our

model effectively captures the underlying graph structures and

is not overly reliant on the idiosyncrasies of the training data,

thereby demonstrating superior resistance to overfitting.

1) Regularization Techniques: Both SIR-GN and 2FWL-

SIRGN incorporate advanced regularization techniques

that constrain the model complexity, thereby reducing the

likelihood of overfitting.

2) Data Augmentation: Our methods employ data aug-

mentation strategies that enhance the model’s ability to

generalize well to unseen data.

3) Early Stopping Criteria: We implemented early stop-

ping criteria based on validation loss, which prevents the

model from learning the noise in the training data, thus

mitigating overfitting.

4) Cross-Validation: Rigorous :-fold cross-validation was

employed to ensure that the performance metrics are

reliable and not merely a result of a favorable data split.

With using similar datasets we can use one dataset to train

the models and the unknown dataset to test the trained models

to fully see if the algorithms can effectively learn the structural

patterns within a graph.

2) Comparative Analysis: When transposed with traditional

GNN-based methods, both SIR-GN and 2FWL-SIRGN exhibit

superior performance across multiple datasets, as evidenced in

Table. II Notably, 2FWL-SIRGN achieved an accuracy of 95±

3.5 on the MUTAG dataset, outperforming all other methods.

E. Scalability Analysis

Our scalability analysis revealed that the Structural Graph

Partition algorithm effectively reduces computational costs,

making the 2FWL-SIRGN model feasible for large-scale

graphs. When tested on a large cluster, our model maintained

high accuracy while significantly decreasing runtime. To under-

stand the contributions of different components within 2FWL-

SIRGN, we conducted an ablation study by systematically re-

moving or modifying key elements, such as the structural par-

titioning algorithm and the 2-dimensional Weisfeiler-Lehman

extension.

1) Without Structural Partitioning: Both SIR-GN and

2FWL-SIRGN incorporate advanced regularization tech-

niques that constrain the model complexity, thereby re-

ducing the likelihood of overfitting.

2) Without 2-FWL Extension: Reverting to a simpler

Weisfeiler-Lehman framework resulted in decreased node

classification accuracy by approximately 10%, indicating

the importance of capturing higher-order structural infor-

mation.

V. DISCUSSION

In the field of graph neural networks, the ability to detect

and analyze complex structures within graph data is crucial.

The Weisfeiler-Lehman (WL) test and its variants have been

instrumental in this regard. However, the traditional WL test

and its direct extension, the :-dimensional Weisfeiler-Lehman

(kWL) test, have limitations. They can miss important patterns

due to their local nature and may not scale well or may overfit

when used in a machine learning setting. [31]

To address these issues, researchers have proposed the

folklore Weisfeiler-Lehman (k-FWL) test shown in algorithm

1, a variant of the WL test that is more efficient and less prone

to overfitting. The k-FWL test operates by considering k-tuples

of nodes, similar to the k-WL test, but with a slightly different

update definition that makes it more computationally efficient.

We chose to utilize the 2FWL test in the SIR-GN model.

This decision was based on the understanding that the 2FWL

test is as capable of detecting cycles in graph data as the 3-WL

test while being more efficient than the 2WL test. This claim is

supported by the findings presented in "A Short Tutorial on the

Weisfeiler-Lehman Test And Its Variants", which highlights

the discriminating power of k-FWL being equivalent to the

one of (k-1)-WL for k 3.

Moreover, the documentation provides an example in which

the 2FWL test successfully distinguishes between two regular

non-isomorphic graphs, in which both the classical WL test

and the 2WL test fail. This illustrates the power of the

FWL test to capture complex structures in graph data, further

supporting our decision to use the 2FWL test with SIR-GN.

TABLE III: Trained on the left and tested on the right dataset.

Method Wisc:Tex Tex:Wis Tex:Corn Corn:Tex Wis:Corn Corn:Wis

GAT 30.54 32.61 29.67 31.58 29.67 27.81

GCN 31.66 33.81 32.45 34.23 30.55 31.84

GCN2 35.04 36.31 36.68 36.21 34.68 35.21

FSGNN 39.54 41.81 38.41 40.21 38.75 38.51

ACMII 38.63 40.21 39.73 42.91 37.15 36.54

SIR-GN 48.21 50.28 47.51 45.21 45.81 44.61

2FWL-SIRGN 57.11 56.21 49.92 48.91 47.2 49.21

VI. CONCLUSION

In this paper, we introduced 2FWL-SIRGN, a novel

graph representation learning approach that integrates the 2-

dimensional Folklore Weisfeiler-Lehman test with a structural

partitioning algorithm to address scalability and representa-

tional challenges in large-scale graph learning. Our experimen-

tal results demonstrate that 2FWL-SIRGN not only achieves

superior node classification accuracy compared to state-of-

the-art baselines but also offers substantial improvements in

computational efficiency.

The combination of structural partitioning and the enhanced

Weisfeiler-Lehman test allows our model to effectively cap-

ture intricate structural patterns in graphs while maintaining

scalability. This makes 2FWL-SIRGN particularly suitable for

real-world applications involving large and complex networks,

such as social network analysis, botnet detection, and bioin-

formatics.

Our experimental results demonstrated the superior perfor-

mance and scalability of the 2FWL-SIRGN model across var-

ious datasets. This approach not only captures intricate struc-

tural information but also scales effectively to large graphs,

making it suitable for real-world applications in fields such as

social network analysis, cybersecurity, and bioinformatics.

Future work will focus on further optimizing the Structural

Graph Partition algorithm and exploring additional applica-

tions of the 2FWL-SIRGN model. We also plan to extend

our approach to dynamic and temporal graphs, enabling the

capture of time-dependent structural patterns.

ACKNOWLEDGMENT

This research was funded by the National Centers of Aca-

demic Excellence in Cybersecurity grant H98230-22-1-0300,

which is part of the National Security Agency.

REFERENCES

[1] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on

neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[2] W. L. Hamilton, Graph representation learning. Morgan & Claypool
Publishers, 2020.

[3] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD

international conference on Knowledge discovery and data mining, 2014,
pp. 701–710.

[4] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international

conference on Knowledge discovery and data mining, 2016, pp. 855–
864.

[5] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, “struc2vec: Learning
node representations from structural identity,” in Proceedings of the 23rd

ACM SIGKDD international conference on knowledge discovery and

data mining, 2017, pp. 385–394.

[6] M. Joaristi and E. Serra, “Sir-gn: A fast structural iterative representation
learning approach for graph nodes,” ACM Transactions on Knowledge

Discovery from Data (TKDD), vol. 15, no. 6, pp. 1–39, 2021.

[7] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[8] C. Morris, G. Rattan, and P. Mutzel, “Weisfeiler and leman go sparse:
Towards scalable higher-order graph embeddings,” Advances in Neural

Information Processing Systems, vol. 33, pp. 21 824–21 840, 2020.

[9] R. A. Rossi, N. K. Ahmed, and E. Koh, “Higher-order network represen-
tation learning,” in Companion Proceedings of the The Web Conference

2018, 2018, pp. 3–4.

[10] C. Yang, M. Liu, V. W. Zheng, and J. Han, “Node, motif and subgraph:
Leveraging network functional blocks through structural convolution,”
in 2018 IEEE/ACM International Conference on Advances in Social

Networks Analysis and Mining (ASONAM). IEEE, 2018, pp. 47–52.

[11] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan,
and M. Grohe, “Weisfeiler and leman go neural: Higher-order graph
neural networks,” in Proceedings of the AAAI conference on artificial

intelligence, vol. 33, no. 01, 2019, pp. 4602–4609.

[12] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn,
and K. M. Borgwardt, “Weisfeiler-lehman graph kernels.” Journal of

Machine Learning Research, vol. 12, no. 9, 2011.

[13] M. Grohe and M. Otto, “Pebble games and linear equations,” The

Journal of Symbolic Logic, vol. 80, no. 3, pp. 797–844, 2015.

[14] R. Sato, “A survey on the expressive power of graph neural networks,”
arXiv preprint arXiv:2003.04078, 2020.

[15] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[16] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” arXiv preprint arXiv:1710.10903,
2017.

[17] R. v. d. Berg, T. N. Kipf, and M. Welling, “Graph convolutional matrix
completion,” arXiv preprint arXiv:1706.02263, 2017.

[18] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural
networks for graphs,” in International conference on machine learning.
PMLR, 2016, pp. 2014–2023.

[19] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in Neural Information Processing

Systems, vol. 27, 2014, pp. 3104–3112.

[20] C. Damke, V. Melnikov, and E. Hüllermeier, “A novel higher-order
weisfeiler-lehman graph convolution,” in Asian Conference on Machine

Learning. PMLR, 2020, pp. 49–64.

[21] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley

interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433–
459, 2010.

[22] P. Rozenshtein and A. Gionis, “Temporal pagerank,” in Joint Euro-

pean Conference on Machine Learning and Knowledge Discovery in

Databases. Springer, 2016, pp. 674–689.

[23] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman,
and C. Hansch, “Structure-activity relationship of mutagenic aromatic
and heteroaromatic nitro compounds. correlation with molecular orbital
energies and hydrophobicity,” Journal of medicinal chemistry, vol. 34,
no. 2, pp. 786–797, 1991.

[24] D. Q. Nguyen, T. D. Nguyen, and D. Phung, “Universal graph trans-
former self-attention networks,” in Companion Proceedings of the Web

Conference 2022, 2022, pp. 193–196.

[25] N. Wale, I. A. Watson, and G. Karypis, “An extensive comparison of
recent classification tools applied to the ncicancer screen data,” Journal

of Chemical Information and Modeling, vol. 48, no. 3, pp. 644–654,
2008.

[26] ——, “An extensive comparison of recent classification tools applied
to the ncicancer screen data,” Journal of Chemical Information and

Modeling, vol. 48, no. 3, pp. 644–654, 2008.
[27] P. Yanardag and S. V. N. Vishwanathan, “Collab dataset,” Proceedings

of the 21th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD), pp. 1365–1374, 2015.
[28] J. Pei, L. Tang, and B. Zhao, “Networks with node attributes: Using an-

notated graphs for classification,” in Proceedings of the 9th International

Conference on Data Mining (ICDM), 2009, pp. 1085–1090.
[29] ——, “Networks with node attributes: Using annotated graphs for

classification,” in Proceedings of the 9th International Conference on

Data Mining (ICDM), 2009, pp. 1085–1090.
[30] ——, “Networks with node attributes: Using annotated graphs for

classification,” in Proceedings of the 9th International Conference on

Data Mining (ICDM), 2009, pp. 1085–1090.
[31] C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec, “Learning structural

node embeddings via diffusion wavelets,” in International ACM Confer-

ence on Knowledge Discovery and Data Mining (KDD), vol. 24, 2018.
[32] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:

Large-scale information network embedding,” in Proceedings of the 24th

international conference on world wide web, 2015, pp. 1067–1077.

	Introduction
	Related Works
	(Folklore) Weisfeiler-Lehman Isomorphism Test
	WL-related Graph Representation Learning Techniques

	Methodology
	2FWL-SIRGN
	Structural Graph Partitioning

	Experiment and Results
	Datasets
	Experimental Setup
	Evaluation Metrics
	Results
	Resistance to Overfitting
	Comparative Analysis

	Scalability Analysis

	Discussion
	Conclusion
	Acknowledgment
	References

