LLM-GMP: Large Language Model-Based
Message Passing for Zero-Shot Learning on
Graphs

Justin Carpenter”
Computer Science Department
Boise State University
Boise, Idaho, USA
JustinCarpenter836 @u.boisestate.edu

Abstract—Graph-structured data is ubiquitous to many
scientific and industrial applications, with tasks such as
node classification, edge prediction, and graph classification
widely studied using Graph Neural Networks (GNNs).
While effective, GNNs rely on supervised training and
struggle with zero-shot learning, where models must gen-
eralize to unseen tasks without labeled data.

Recent work has explored Large Language Models
(LLMs) for zero-shot graph reasoning by converting graphs
into text, but these approaches are hindered by context
window limits, scalability issues, and hallucinations.

We propose Large Language Model Graph Message
Passing (LLM-GMP), a framework that reformulates mes-
sage passing as task-aware textual communication between
nodes. This design enables scalable, interpretable, and
distributed reasoning with LLLMs. We evaluate LLM-GMP
across diverse benchmark datasets and demonstrate its
effectiveness against a range of state-of-the-art baselines.

LLM-GMP achieves competitive or superior zero-shot
accuracy, in some cases approaching and outperforming
supervised GNNs, while requiring no training. Runtime
analysis further shows that scalability depends on graph
size and density, with structured message passing improv-
ing efficiency.

By aligning graph exploration with LLM reasoning,
LLM-GMP establishes a new paradigm for interpretable
and scalable zero-shot graph learning at the intersection of
GNNs, LLMs, and agentic Al

Index Terms—Large Language Models (LLMs), Graph
Neural Networks (GNNs), Zero-Shot Learning, Message
Passing

I. INTRODUCTION

Graphs offer a natural and powerful way to repre-
sent data with relational and structural dependencies,
making them essential in domains such as social net-
work analysis, biological systems, knowledge graphs,
and recommendation engines [4], [14], [26]. The advent
of GNNs has significantly advanced the state of the
art in learning on graph-structured data [19], [28]. By

“These authors contributed equally to this work.

Md Athikul Islam”
Computer Science Department
Boise State University
Boise, Idaho, USA
mdathikulislam @u.boisestate.edu

Edoardo Serra
Computer Science Department
Boise State University
Boise, Idaho, USA
edoardoserra@boisestate.edu

employing message-passing mechanisms that iteratively
aggregate information from neighboring nodes, GNNs
enable expressive and scalable representations for a
variety of tasks, including node classification, link pre-
diction, and graph classification [28], [31].

However, despite these advances, zero-shot learning
(ZSL) on graphs remains a persistent challenge [15].
In the zero-shot setting, models are required to gener-
alize to previously unseen tasks or label spaces without
additional labeled training data [2]. Traditional GNNs
are ill-equipped for this scenario: they typically rely on
supervised training tailored to specific tasks and lack the
adaptability to handle new objectives without retraining
or architectural modifications.

In parallel, LLMs have recently demonstrated im-
pressive zero-shot generalization across a wide range
of NLP and reasoning tasks, thanks to pretraining on
massive and diverse text corpora [11], [23]. Inspired by
this capability, researchers have begun exploring the use
of LLMs for graph problems, primarily by translating
graph structures into textual formats that LLMs can
process [3], [23], [24]. While this approach has shown
promise—especially in zero-shot contexts—it is funda-
mentally limited. Flattening entire graphs into text often
exceeds the LLM’s context window, particularly for large
or densely connected graphs, and can introduce semantic
ambiguity or information loss. Moreover, these methods
are prone to hallucinations, where the model generates
outputs that deviate from the underlying graph structure,
undermining reliability in critical applications.

To address these limitations, we propose Large Lan-
guage Model Graph Message Passing (LLM-GMP),
a novel framework that reimagines graph processing
through the lens of zero-shot language-based reasoning.
Rather than representing the graph as a static text block,
LLM-GMP simulates message passing in the language
domain: nodes exchange task-aware, interpretable text

messages generated by an LLM. These messages evolve
over multiple rounds of interaction, allowing information
to propagate across the graph in a structured, hierarchical
manner. Crucially, the LLM is aware of the downstream
task throughout this process, enabling it to synthesize
and interpret contextual information effectively.

More concretely, LLM-GMP defines a message pass-
ing algorithm in which each node iteratively aggregates
textual information received from its neighbors, with the
LLM generating messages tailored to the specific zero-
shot learning task. Over successive iterations, the LLM
refines each node’s understanding of its local and global
context, culminating in task-specific reasoning (e.g.,
classification or prediction) based on the final aggregated
messages. This paradigm harnesses the complementary
strengths of message passing and LLM-based inference,
achieving both interpretability and flexibility without
retraining.

To the best of our knowledge, this is the first frame-
work to define such a paradigm, which can be viewed
as a form of agentic AI, where each node acts as a
lightweight reasoning agent within a collaborative, task-
driven system. Preliminary experiments show that LLM-
GMP offers strong performance across a range of zero-
shot graph learning tasks, highlighting its potential as
a robust alternative to traditional graph representation
learning approaches.

Our main contributions are:

e We introduce LLM-GMP, the first framework that
leverages LLMs for zero-shot graph learning via it-
erative message passing, combining interpretability
with flexibility.

o We design a scalable message passing scheme that
mitigates LLM limitations, such as context window
size and hallucinations by structuring inference as
localized node-level interactions.

o We conduct extensive experiments on 9 benchmark
networks, showing that LLM-GMP either outper-
forms baselines or achieves comparable results to
supervised GNNs without requiring labels.

o We provide a runtime analysis demonstrating how
graph size and density influence computational cost,
and discuss strategies for future optimization, such
as batching and distributed inference.

II. RELATED WORK

This section reviews three key research directions
relevant to our work: graph representation learning,
graph neural networks, and the emerging line of LLMs
operating directly on graphs.

A. Graph Representation Learning (GRL)

Graph representation learning (GRL) aims to embed
nodes into low-dimensional vectors that preserve both

structural and attribute information, enabling tasks such
as classification, clustering, and community detection.
Early dimensionality reduction techniques, including Lo-
cal Linear Embedding and Laplacian Eigenmaps, es-
tablished the foundation but suffered from scalability
limitations.

A major breakthrough came with random-walk—based
methods. DeepWalk [17] generates truncated random
walks to treat node sequences analogously to sentences,
using language models to learn embeddings that capture
neighborhood similarities. Node2vec [6] extends this
idea with biased random walks, balancing exploration
of local and global structural properties. Attribute-aware
variants further incorporate node features during walks
or matrix factorization, enriching embeddings with se-
mantic information. Matrix factorization methods, in
turn, decompose adjacency or feature matrices directly,
with inductive adaptations supporting textual attributes.

GRL also expanded into semi-supervised and un-
supervised paradigms. Semi-supervised GRL integrates
partial labels via regularization or context prediction,
with GCN-based approaches excelling by propagating
label signals across layers while fusing topology and
attributes. Unsupervised variants such as graph autoen-
coders reconstruct structural information for clustering.
More recent hybrids combine GCNs with Markov ran-
dom fields or community-aware strategies to improve
performance [25], though often at increased computa-
tional cost.

B. Graph Neural Networks

GNNs learn node representations by aggregating in-
formation from local neighborhoods. Graph Convolu-
tional Networks (GCN) [10] introduced an efficient
layer-wise propagation rule that approximates spectral
graph convolutions. In practice, a GCN layer updates a
node’s representation by taking a weighted average of
its own features and those of its immediate neighbors,
effectively smoothing features across the graph. Graph
Attention Networks (GAT) [22] improved upon this by
incorporating self-attention. Instead of using fixed, static
weights for neighbors, like GCN. GAT learns to assign
different importance weights to different neighbors, al-
lowing the model to focus on the most relevant informa-
tion in a node’s vicinity. Graph Isomorphism Networks
(GIN) [29] uses a simple yet powerful update rule, sum-
ming neighbor features and processing the result through
a Multi-Layer Perceptron. This method was shown to
be as powerful as the Weisfeiler-Lehman Isomorphic
test. [27] Despite their success, all these models are
supervised and depend on labeled data and therefore are
not inherently equipped for zero-shot learning tasks.

Algorithm 1 LLM-Guided Message Passing with Iteration-wise Aggregation and Parallel Batching

Inmput: Graph G = (V, E), LLM model LLM, number of message steps / iterations 7', node batch size b

1: for all node v; € V do

2: hEO) + OriginalRepresentation(v;)
3: end for

4: for iteration t =1 to T do

., Bi} of size b

5: Partition nodes V' into non-overlapping batches {B1, Ba, . .

6: for all batch Bj, do

7: Step 1: Construct prompts for all nodes in the batch

8: for all node v; € B, do

9: prompt; < ConstructPrompt (v;, hgt_l), {hg»t_l) | v; € N(i)})
10: end for

11: Ste(p 2: Evaluate prompts jointly with LLM

12: {hit) | v; € By} < LLM({prompt; | v; € By})

13: end for

14: end for

15: for all node v; € V do

16: 9; < LLM or Classiﬁer(hET))
17: end for

18: return Predicted labels {g; }icv

C. LLMs Operating Directly on Graphs

The integration of large language models (LLMs)
into graph processing has gained considerable traction,
showcasing their capacity to reason over complex graph-
structured data. Li et al. [12] investigated the struc-
tural analysis abilities of LLMs, introducing specialized
benchmarks and datasets to support rigorous evaluation.
Fan et al. [5] demonstrated that LLMs can effectively
augment traditional GNNs, enhancing their representa-
tional power and predictive performance. Tang et al. [21]
proposed GraphGPT, an instruction-tuned framework
that fuses LLMs with graph knowledge, enabling robust
generalization across diverse graph datasets.

A parallel line of work focuses on the integration of
LLMs with knowledge graphs (KGs). Ibrahim et al. [9]
categorized the landscape into three main paradigms:
KG-augmented LLMs, LLM-augmented KGs, and hy-
brid frameworks that combine both methodologies.

Community-driven initiatives, such as the “Awesome-
Graph-LLM” repository [8], have emerged to cata-
log ongoing research and tools at the intersection
of graphs and LLMs. Benchmarking platforms like
GraphEval36K [20]—which includes 40 graph-related
coding tasks and 36,900 test cases—provide compre-
hensive assessments of LLMs’ reasoning capabilities in
graph domains. Similarly, GPT4Graph [7] evaluates how
well LLMs understand and manipulate graph-structured
data, shedding light on their strengths and limitations.

Notably, the most effective zero-shot approaches for
graph tasks are those that translate graph structures into
textual representations, making them directly accessible

to LLMs. However, these methods are constrained by
the limited context window of current models and are
susceptible to hallucinations, which may affect reliability
in critical applications.

III. METHODOLOGY

The methodology comprises LLM-Guided Message
Passing, incorporating Batch-wise Aggregation and tai-
lored LLM Prompt Design to enable effective graph-
level reasoning.

A. LLM-Guided Message Passing with Iteration-wise
Batching

We formulate our task as a node classification prob-
lem, where the goal is to predict the class label of
each node in a graph. Inspired by the message passing
paradigm in GNNs, we reimagine node communication
using LLMs, which offer semantically rich and adaptive
reasoning capabilities. Instead of applying static aggre-
gation functions across all neighbors in a single pass,
we introduce an iterative message-passing approach with
batching for efficient computation.

1) Iteration-wise Batching Strategy: Conventional
GNNs aggregate information from all neighboring nodes
simultaneously, typically using operations such as sum-
mation, averaging, or attention mechanisms. While ef-
fective for numerical features, such approaches often
struggle to capture nuanced semantic interactions when
applied to textual graphs. To address this limitation, we
leverage LLM-guided message passing, in which each
node’s representation is refined iteratively by aggregating

information from all neighbors, while batching is used
solely for parallel processing of LLM queries.

Let V be the set of nodes in the graph, and v; € V' a
node with neighborhood N (7). At each message-passing
step t (for a total of T steps), the nodes V' are partitioned
into non-overlapping batches Bi, Bs, ..., Bk of size b
to reduce computational overhead. Within each batch
By, we first construct prompts for all nodes in parallel:

prompt; = ConstructPrompl(vi, hff*l), {h;’FD |v; € N(z)}) ;Vv; € By

These prompts are then jointly evaluated by the LLM
to produce updated representations for all nodes in the
batch:

{hz(.t) | v; € By} = LLM({prompt; | v; € By})

This process continues across all batches in each
iteration and for all 7' message-passing steps. Node
batching thus enables efficient parallel LLM calls, while
ensuring that each node still incorporates the complete
information from its neighborhood.

The advantages of this approach include: (i) effi-
cient parallel computation without sacrificing neighbor
information, (ii) interpretable and traceable updates at
each iteration, and (iii) enriched contextual reasoning,
as the LLM balances the node’s original content with
information aggregated from its neighborhood.

The complete procedure is formalized in Algorithm 1,
which outlines initialization, batch construction, prompt
generation, and iterative refinement of node representa-
tions. This design ensures scalability, reproducibility, and
seamless integration with transformer-based language
models for graph-centric tasks.

B. LLM Prompt Design

The effectiveness of our message passing frame-
work relies critically on the design of natural language
prompts that guide the LLM. We construct two types
of prompts: one for iterative message passing updates
and one for final node classification. These prompts are
informative, modular, and context-aware, allowing the
LLM to process localized information while remaining
grounded in the overall task objective.

Unlike classical GNNs, where feature aggregation is
handled numerically, our approach uses text instruc-
tions to stimulate semantic reasoning in the LLM. Each
prompt explicitly encodes the task type, iteration context,
and relevant input segments, such as the original node
text, the current semantic state, and the texts of neigh-
boring nodes. This design ensures the LLM preserves
semantic grounding while extracting contextual signals
from the neighborhood.

1) Prompt for Message Passing Aggregation: During
iterative message passing, each node’s representation
is refined using the texts of all neighbors. To reduce

computational overhead, nodes are processed in batches:
prompts are first constructed for all nodes in a batch, and
then submitted jointly to the LLM in a single evaluation
call. This ensures both scalability and semantic fidelity.

The structure of each prompt instructs the LLM to
integrate semantic content from the target node and its
neighbors:

LLM Aggregation Prompt

You are assisting with a document classifica-
tion task on a graph. Each node is a document.
You are refining the representation of one
document based on its own content and the
content of all its neighbors.

Task: Enhance the semantic representation of
the target document using its original content
and the content of all neighboring documents.
This enriched representation will be used in
subsequent message passing steps and for final
classification.

Batch Context: You are processing nodes in
batch #{BATCH_ID} of {TOTAL_BATCHES}.
Batching is only for computational efficiency;
all neighbors of each node should be considered
regardless of batch membership.

For Each Node in the Batch, Provide:

o Original Document:
{ORIGINAL_TEXT}

o Current Representation (from previous
steps):
{CURRENT_STATE}

o Neighbor Documents:
NEIGHBOR_TEXT_1,
NEIGHBOR_TEXT_2,

Output: For each node in the batch, return a se-
mantically enriched version of the document that
integrates both the original text and informative
content from all neighbors. Each output should
be clearly aligned with its corresponding input
node.

2) Prompt for Node Classification: After message
passing completes, the final node representation is pro-
vided to the LLM for classification. This prompt focuses
on the enriched semantic embedding and omits batch or
intermediate structural details:

LLM Node Classification Prompt

You are performing node classification in a
graph of documents. Each document belongs
to a topic category.

Task: Based on the enriched representation of
the document (after message passing), predict the
most likely topic.

Available Classes:
¢ sci.space
« rec.sport.hockey
o talk.politics.mideast
o misc.forsale

Final Representation of Document:
{ENRICHED_DOCUMENT_TEXT}

Output: Return only the predicted class label for
this document.

3) Prompt Awareness and Semantic Traceability:
Each prompt explicitly communicates the current com-
putation step and the intended use of the output. During
message passing, the LLM is informed that all neighbors
should be considered, and that enriched representations
will be used in subsequent iterations and for final clas-
sification. Batch indicators (e.g., {BATCH_ID}) provide
computational context but do not restrict neighbor ag-
gregation. The classification prompt then uses the final
node embedding to ensure accurate label prediction.

Together, these prompt designs enable modular, in-
terpretable, and semantically grounded reasoning over
graph-structured textual data, forming the linguistic
backbone of our LLM-guided message passing frame-
work.

IV. EXPERIMENTS

We organize our experiments into six components:
implementation settings, baselines, datasets, results, run-
time analysis, and message-passing evaluation.

A. Implementation Settings

We use an NVIDIA GeForce RTX 4090 GPU for our
experiments. For all LLM-based operations, we utilize
the LLaMA-3.1 model accessed via the open-source
library Ollama'. To support graph-based reasoning, we
construct a k-nearest neighbors (k-NN) document graph,
where each node represents a document and is initialized
with an LLM-derived embedding. Edges are formed by
connecting each node to its top-k most semantically
similar neighbors based on cosine similarity of the
embeddings.

Thttps://ollama.com/

B. Baselines

To evaluate the effectiveness of LLM-GMP, we bench-
mark against a diverse set of baseline methods spanning
node classification and community detection. While
node classification emphasizes predicting class labels
based on local features, community detection focuses
on identifying clusters of nodes with dense intra-cluster
connectivity and sparse inter-cluster links, often corre-
sponding to functional roles, shared attributes, or emer-
gent behaviors in real-world systems.

Classical community detection methods primarily rely
on topology. Cut-based approaches, such as min-cut or
normalized cut, recursively partition graphs to minimize
edge cuts between groups. Local expansion methods, in
contrast, grow communities around high-centrality seeds
by iteratively optimizing community fitness measures,
often aided by random walks or centrality heuristics.
Although effective in some settings, these methods are
limited by their neglect of attribute information and their
sensitivity to sparsity and scalability challenges.

We therefore compare LLM-GMP against four major
categories of baselines:

o Random: Assigns labels uniformly at random,
serving as a lower-bound chance-level baseline.

o Community Detection (Topology-only): Methods
that cluster nodes using only graph structure.

— Infomap [18]: Models information flow via
random walks and compresses these flows to
reveal communities.

— Louvain [1]: A widely used modularity opti-
mization method for fast hierarchical commu-
nity detection.

- SCD [13]: Expands communities through
nearest-greater-centrality neighbors using
fuzzy relation criteria.

« Embedding-based: DeepWalk [17] performs ran-
dom walks on the graph and treats them as sen-
tences for a Skip-gram model, producing node
embeddings that capture structural similarity in an
unsupervised manner.

o Graph Neural Networks (Supervised): Models
trained with partial label supervision.

— GCN [10]: Learns node features via symmetric
neighborhood aggregation with fixed weights.

— GAT [22]: Incorporates self-attention to as-
sign varying importance to neighbors, enabling
anisotropic aggregation.

— GIN [29]: A highly expressive GNN with
discriminative power equivalent to the Weis-
feiler—Lehman isomorphism test.

This selection spans topology-centric, embedding-
driven, and supervised paradigms, providing a compre-
hensive backdrop for evaluating LLM-GMP, which in-

TABLE I
STATISTICS OF THE DATASETS USED IN EXPERIMENTS

Dataset Nodes Edges Classes Homophily
Cora 2,708 5,429 7 High
CiteSeer 3,327 4,732 6 High
PubMed 19,717 44,338 3 High
Cornell 183 295 5 Low
Texas 183 309 5 Low
Wisconsin 251 499 5 Low
Washington 229 443 5 Low
Polbooks 105 441 3 High
AdjNoun 112 425 2 Mixed

stead performs zero-shot inference through LL.M-guided
message passing without requiring task-specific training
or labels.

C. Datasets

We evaluate LLM-GMP on a diverse set of benchmark
datasets for node classification. These include citation
networks, web-based graphs, and other relational net-
works that differ in size, density, and levels of ho-
mophily. A summary of dataset statistics is provided in
Table I.

o Citation Networks: Cora, CiteSeer, and PubMed
are standard benchmarks where nodes represent
scientific publications and edges denote citation
links [30]. The task is to classify each paper into
its research area, with labels spanning 7, 6, and 3
categories, respectively. These datasets exhibit high
homophily, meaning connected nodes are likely to
share the same label.

o WebKB: Cornell, Texas, Wisconsin, and Washing-
ton are graphs constructed from computer science
department web pages at different universities [16].
Nodes are individual web pages, edges represent
hyperlinks, and the classification task involves 5
categories (student, faculty, course, staff, and de-
partment). These datasets are more heterophilic,
where connected nodes often belong to different
classes.

o Other Networks:

— Polbooks is a co-purchase network of 105
political books sold on Amazon, connected
by 441 edges representing frequent co-
purchasing [13]. The classification task in-
volves 3 categories: liberal, conservative, and
neutral, and the graph is highly homophilic.

— AdjNoun is a word co-occurrence network
derived from the novel David Copperfield,
where nodes are 112 nouns or adjectives and
edges connect words appearing adjacently in
the text [13]. The task is binary classification

into adjective or noun, and the dataset exhibits
mixed homophily.

D. Results

We evaluate LLM-GMP against a broad set of base-
lines across nine benchmark datasets, reporting node
classification accuracy in Table II. The baselines in-
clude random assignment, community detection methods
(Infomap, Louvain, SCD), embedding-based methods
(DeepWalk), and popular GNN models (GCN, GAT,
GIN). In contrast, LLM-GMP operates in a zero-shot
setting without access to training labels.

On the homophilic citation networks (Cora, CiteSeer,
PubMed), supervised GNNs such as GCN and GAT
achieve the best results, reaching over 80% accuracy on
Cora. While LLM-GMP trails these supervised methods,
it still performs significantly better than community-
detection or random baselines, confirming that LLM-
guided message passing is able to capture non-trivial
structural and semantic information even without labels.
For instance, on CiteSeer, our approach achieves 61.8%
accuracy, far surpassing Infomap (30.4%) or DeepWalk
(46.5%).

On the heterophilic WebKB datasets (Cornell, Texas,
Wisconsin, Washington), LLM-GMP shows particularly
strong results. It outperforms all baselines on Cornell
(61.7%) and Wisconsin (60.7%), demonstrating that it-
erative LLM-based aggregation is well-suited to set-
tings where neighboring nodes often belong to different
classes. Even when not the best overall, such as on Texas
and Washington, our method remains competitive with
strong GNN baselines, consistently surpassing traditional
clustering methods. This highlights the robustness of
LLM-GMP in challenging heterophilic settings where
message passing often struggles.

On the additional networks, LLM-GMP achieves com-
petitive results as well. On Polbooks, where the ho-
mophily level is high and several baselines perform
strongly, our method achieves 76.2%, outperforming
random and community-detection approaches but falling
slightly behind embedding-based and supervised GNNs.

TABLE II
NODE CLASSIFICATION ACCURACY (%) OF BASELINE ALGORITHMS AND LLM-GMP (ZERO-SHOT) ACROSS NINE BENCHMARK DATASETS.
THE BEST PERFORMANCE FOR EACH DATASET IS HIGHLIGHTED IN BOLD.

Dataset Random Infomap Louvain SCD DeepWalk GCN GAT GIN LLM-GMP
Citation Networks (Homophilic)
Cora 14.80 43.90 64.70 33.50 70.00 81.00 80.90 70.00 61.85
CiteSeer 14.90 30.40 47.50 12.90 46.50 70.80 6830 48.10 61.82
PubMed 34.80 38.90 69.60 30.60 69.90 78.70 7630 75.70 58.31
Web-KB Networks (Heterophilic)
Cornell 29.73 29.73 32.43 43.24 37.84 4324 37.84 37.84 61.74
Texas 43.24 51.35 51.35 67.57 59.46 70.27 06486 37.84 66.90
Wisconsin 31.37 27.45 39.22 56.86 45.10 56.86 5294 39.22 60.73
Washington 30.19 41.51 32.08 11.32 52.83 4528 56.60 35.85 50.62
Other Networks
Polbooks 47.62 85.71 90.48 85.71 85.71 8571 9048 85.71 76.19
AdjNoun 56.52 52.17 43.48 69.57 69.57 69.57 7391 82.61 86.96
In contrast, on the AdjNoun dataset, LLM-GMP achieves i~ :
. S 3L 6.62 _|
the best overall performance at 86.9%, surpassing even g 107 —
. . o0 = .|
the best-performing supervised GNNs (GIN at 82.6%). < F 1
This suggests that in settings with mixed or lower £ 102 - R el 4
homophily, LLM-guided message passipg can gener.al- g B 3.43 3.37 3.47 &
ize more effectively than purely numerical aggregation E 10! i 2.56]
functions. e - o130 H E
. 3 C |
Overall, the results show that LLM-GMP provides &5 F m ‘ ‘ ‘ ‘ ‘ ‘ ‘ A1
consistent and oftep substaptial improvF:ments over & $°§ @"“\\ &8&% s & & S &b
topology-only baselines, while approaching the per- &y q\é&“ 4&,@ A

formance of fully supervised GNNs in several cases.
Notably, in heterophilic and mixed-homophily graphs,
LLM-GMP achieves state-of-the-art performance in a
zero-shot setting, demonstrating the promise of integrat-
ing LLMs into graph learning pipelines.

E. Runtime Analysis

Figure 1 reports the execution times of LLM-GMP
across the nine datasets. Smaller graphs such as Polbooks
(105 nodes) complete within minutes, while AdjNoun
(112 nodes) requires longer runtime (13 minutes) due
to higher average degree and denser neighborhoods.
Medium-sized WebKB datasets (Cornell, Texas, Wash-
ington, Wisconsin) scale to 29-47 minutes, as their
heterophilic structures increase message-passing com-
plexity. Citation networks (Cora and CiteSeer) demand
81 and 97 minutes, respectively, since they contain
thousands of nodes and edges. PubMed, the largest
dataset (19,717 nodes, 44,338 edges), dominates runtime
at 753 minutes, highlighting the computational cost of
LLM-driven message passing at scale. Overall, runtime
grows with both graph size and structural density, with
neighborhood aggregation being the primary bottleneck.
Future work may reduce this overhead via parallelization
and batching strategies.

Fig. 1. Execution time (log-scaled minutes) of LLM-GMP across nine
datasets, reflecting scalability with respect to graph size and density.

F. Ablation Study

To evaluate the effectiveness of structured graph mes-
sage passing in LLM-GMP, we perform an ablation
study by comparing it against a baseline where the LLM
is used directly for node classification without our graph
message passing (GMP) framework. In this baseline,
the LLM receives the entire graph in textual form and
attempts to classify nodes in a single step, without any
message passage approach.

As shown in Figure 2, LLM-GMP consistently out-
performs the LLM-only setting across all datasets. The
improvement is especially pronounced on larger graphs
such as Cora and CiteSeer. In addition, in large graphs
such as PubMed, the LLLM baseline fails due to context
window limitations and it is not able to produce any
outcome. These results highlight that decomposing rea-
soning into iterative, local exchanges through GMP is
crucial for scalability and accuracy in zero-shot graph
learning.

80 - n

60 =
40 -
L
ll %

I B LLM-GMP (Ours) I BLLM (without GMP)

Accuracy (%)

Cora
CiteSeer
PubMed |
Cornell —|

Texas

Wisc.

Wash. —|
AdjNoun —
Polbooks —

Fig. 2. Ablation study on zero-shot message passing. LLM-GMP
(blue) significantly outperforms the LLM baseline without graph
message passing (red), which struggles on larger graphs due to context
window constraints and lack of structured propagation.

V. CONCLUSION

We introduced Large Language Model Graph Mes-
sage Passing (LLM-GMP), a novel framework for zero-
shot graph learning that reformulates message pass-
ing as iterative, task-aware textual communication be-
tween nodes. Unlike traditional GNNs or graph-to-text
approaches, LLM-GMP enables interpretable and dis-
tributed reasoning without task-specific training, while
mitigating LLM limitations such as hallucinations and
context-window constraints through structured, level-
wise exploration.

Extensive experiments across diverse benchmarks
demonstrate that LLM-GMP consistently outperforms
strong baselines and achieves accuracy competitive with
advanced graph learning methods. Our ablation study
further confirms that structured graph message passing
is essential, as direct LLM reasoning without it per-
forms poorly, particularly on larger graphs. Moreover,
the framework scales effectively with graph size while
improving efficiency over prior LLM-based approaches.
These findings establish LLM-GMP as a practical and
effective framework for zero-shot graph learning.

By treating nodes as lightweight reasoning agents,
LLM-GMP provides a flexible, interpretable, and scal-
able framework for graph reasoning, naturally supporting
parallel and distributed inference across large networks.
This work opens new directions for integrating LLM-
based inference with graph learning, advancing the de-
velopment of efficient, label-free, and agentic approaches

at the intersection of GNNs, LLMs, and scalable Al
systems.

REFERENCES

[1] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre.
Fast unfolding of communities in large networks. Journal of
statistical mechanics: theory and experiment, 2008(10):P10008,
2008.

J. Chen, Y. Geng, Z. Chen, J. Z. Pan, Y. He, W. Zhang,

I. Horrocks, and H. Chen. Zero-shot and few-shot learning with

knowledge graphs: A comprehensive survey. Proceedings of the

IEEE, 111(6):653-685, 2023.

Z. Chen, H. Mao, H. Li, W. Jin, H. Wen, X. Wei, S. Wang,

D. Yin, W. Fan, H. Liu, and J. Tang. Exploring the potential

of large language models (Ilms)in learning on graphs. SIGKDD

Explor. Newsl., 25(2):42-61, Mar. 2024.

[4] Z. Chen, Y. Wang, B. Zhao, J. Cheng, X. Zhao, and Z. Duan.
Knowledge graph completion: A review. /[EEE Access, 8:192435—
192456, 2020.

[5] W. Fan, S. Wang, J. Huang, Z. Chen, Y. Song, W. Tang, H. Mao,
H. Liu, X. Liu, D. Yin, et al. Graph machine learning in the era of
large language models (Ilms). arXiv preprint arXiv:2404.14928,
2024.

[6] A. Grover and J. Leskovec. node2vec: Scalable feature learning

for networks. In Proceedings of the 22nd ACM SIGKDD inter-

national conference on Knowledge discovery and data mining,

pages 855-864, 2016.

J. Guo, L. Du, H. Liu, M. Zhou, X. He, and S. Han. Gpt4graph:

Can large language models understand graph structured data?

an empirical evaluation and benchmarking. arXiv preprint

arXiv:2305.15066, 2023.

[8] X. He. Awesome-graph-llm: A collection of awesome things
about graph-related 1lms, 2024. Accessed: 2025-03-27.

[9] N. Ibrahim, S. Aboulela, A. Ibrahim, and R. Kashef. A survey on
augmenting knowledge graphs (kgs) with large language models
(Ilms): models, evaluation metrics, benchmarks, and challenges.
Discover Artificial Intelligence, 4(1):76, 2024.

[10] T. Kipf. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[11] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa.
Large language models are zero-shot reasoners. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Systems,
volume 35, pages 22199-22213. Curran Associates, Inc., 2022.

[12] X. Li, W. Chen, Q. Chu, H. Li, Z. Sun, R. Li, C. Qian, Y. Wei,
C. Shi, Z. Liu, et al. Can large language models analyze graphs
like professionals? a benchmark, datasets and models. Advances
in Neural Information Processing Systems, 37:141045-141070,
2024.

[13] W. Luo, N. Lu, L. Ni, W. Zhu, and W. Ding. Local community
detection by the nearest nodes with greater centrality. Information
Sciences, 517:377-392, 2020.

[14] S. K. Mohamed, A. Nounu, and V. Novacek. Biological ap-
plications of knowledge graph embedding models. Briefings in
Bioinformatics, 22(2):1679-1693, 02 2020.

[15] M. F. Naeem, Y. Xian, F. Tombari, and Z. Akata. Learning graph
embeddings for compositional zero-shot learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 953-962, June 2021.

[16] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang. Geom-
gen: Geometric graph convolutional networks. arXiv preprint
arXiv:2002.05287, 2020.

[17] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online
learning of social representations. In Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 701-710, 2014.

[18] M. Rosvall and C. T. Bergstrom. Maps of random walks on
complex networks reveal community structure. Proceedings of
the national academy of sciences, 105(4):1118-1123, 2008.

[2

—

[3

[t

[7

—

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Mon-
fardini. The graph neural network model. /IEEE Transactions on
Neural Networks, 20(1):61-80, 2009.

K. e. a. Shen. Grapheval36k: A benchmark for evaluating graph
understanding in llms. Proceedings of CVPR, 2024.

J. Tang, Y. Yang, W. Wei, L. Shi, L. Su, S. Cheng, D. Yin,
and C. Huang. Graphgpt: Graph instruction tuning for large
language models. In Proceedings of the 47th International ACM
SIGIR Conference on Research and Development in Information
Retrieval, pages 491-500, 2024.

P. Veli¢kovié, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio. Graph attention networks. In International Conference
on Learning Representations (ICLR), 2018.

D. Wang, Y. Zuo, F. Li, and J. Wu. Llms as zero-shot graph
learners: Alignment of gnn representations with llm token em-
beddings. In A. Globerson, L. Mackey, D. Belgrave, A. Fan,
U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in Neural
Information Processing Systems, volume 37, pages 5950-5973.
Curran Associates, Inc., 2024.

S. Wang, J. Huang, Z. Chen, Y. Song, W. Tang, H. Mao, W. Fan,
H. Liu, X. Liu, D. Yin, and Q. Li. Graph machine learning in
the era of large language models (Ilms). ACM Trans. Intell. Syst.
Technol., May 2025. Just Accepted.

X. Wang, J. Li, L. Yang, and H. Mi. Unsupervised learning
for community detection in attributed networks based on graph
convolutional network. Neurocomputing, 456:147-155, 2021.

S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui. Graph neural
networks in recommender systems: A survey. ACM Comput.
Surv., 55(5), Dec. 2022.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A
comprehensive survey on graph neural networks. [EEE Trans-
actions on Neural Networks and Learning Systems, 32(1):4-24,
2020.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A
comprehensive survey on graph neural networks. [EEE Trans-
actions on Neural Networks and Learning Systems, 32(1):4-24,
2021.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are
graph neural networks? In International Conference on Learning
Representations (ICLR), 2019.

L. Yao, C. Mao, and Y. Luo. Graph convolutional networks for
text classification. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 7370-7377, 2019.

J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang,
C. Li, and M. Sun. Graph neural networks: A review of methods
and applications. Al Open, 1:57-81, 2020.

