

Temporal SIR-GN: Efficient and Effective Structural
Representation Learning for Temporal Graphs

Janet Layne, Justin Carpenter, Edoardo Serra

Boise State University, Boise, ID, USA

[janetlayne,justincarpenter836,edoardoserra]@boisestate.edu

Francesco Gullo

UniCredit, Rome, Italy

gullof@acm.org

ABSTRACT

Node representation learning (NRL) generates numerical vectors

(embeddings) for the nodes of a graph. Structural NRL specifically

assigns similar node embeddings for those nodes that exhibit sim-

ilar structural roles. This is in contrast with its proximity-based

counterpart, wherein similarity between embeddings reflects spa-

tial proximity among nodes. Structural NRL is useful for tasks such

as node classification where nodes of the same class share structural

roles, though there may exist a distant, or no path between them.

Athough structural NRL has been well-studied in static graphs,

it has received limited attention in the temporal setting. Here, the

embeddings are required to represent the evolution of nodes’ struc-

tural roles over time. The existing methods are limited in terms of

efficiency and effectiveness: they scale poorly to even moderate

number of timestamps, or capture structural role only tangentially.

In this work, we present a novel unsupervised approach to struc-

tural representation learning for temporal graphs that overcomes

these limitations. For each node, our approach clusters then ag-

gregates the embedding of a node’s neighbors for each timestamp,

followed by a further temporal aggregation of all timestamps. This is

repeated for (at most) 𝑑 iterations, so as to acquire information from

the 𝑑-hop neighborhood of a node. Our approach takes linear time

in the number of overall temporal edges, and possesses important

theoretical properties that formally demonstrate its effectiveness.

Experiments on synthetic and real datasets show superior per-

formance in node classification, where it is necessary to capture

changes in a node’s neighborhood structure over time to identify

its class. Similar results are achieved in regression experiments. We

also assess the superior scalability of our approach to large graphs.

PVLDB Reference Format:

Janet Layne, Justin Carpenter, Edoardo Serra and Francesco Gullo.

Efficient and Effective Structural Representation Learning for Temporal

Graphs. PVLDB, 16(1): XXX-XXX, 2023.

doi:XX.XX/XXX.XX

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/janetlayne2/Temporal-SIR-GN.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 1 ISSN 2150-8097.

doi:XX.XX/XXX.XX

1 INTRODUCTION

Graphs, i.e., sets of entities (nodes) linked to one other (via edges),

have become a ubiquitous model for representing real-world data

from a plethora of domains [2, 13, 18, 33]. Graph representation

learning (or graph embedding) automates the task of assigning

elements of a graph (e.g., nodes, edges, subgraphs, entire graphs)

numerical vectors – termed embeddings or representations
1
– such

that the similarity between those elements in the graph corresponds

to the similarity between their embeddings [10, 29, 84, 97]. Node

representation learning (NRL) is the term used when embeddings

are generated specifically for the graph nodes.

Importantly, the notion of similarity in NRL is not fixed; ap-

proaches can largely be understood as capturing either node prox-

imity or structural properties in their representations. Proximity-

based approaches [9, 24, 52, 68, 73, 91, 96] preserve the information

about connections between nodes, assigning similar representa-

tions for nodes close in the graph in terms of 𝑑-hop reachability,

co-occurence in a random walk, Personalized PageRank, etc. Con-

versely, structural-role similarity is concerned with information

about nodes’ neighborhood structure (Figures 1–(I)–(II)).
2

NRL has been employed in several downstream tasks, including

node classification, link prediction, clustering, graph visualization,

graph alignment, and graph summarization [10, 57, 97]. Either

methodology (proximity-based or structural) is useful in certain

circumstances. As an example, structural approaches are useful for

node classification, when the node labels are not determined by

proximity/homophily, rather by isomorphic local subgraph struc-

tures. In contrast, tasks such as link prediction may benefit from

use of proximity-based methods, where connections between nodes

are preserved in node representations [28, 30, 54, 56, 57].

A temporal graph is one whose edges change over time. It is

a sequence of graph snapshots representing the nodes and edges

at specific timestamps. Temporal graphs have received consider-

able attention regarding a variety of problems [7, 20, 67, 82, 85],

including NRL [31]. Structural NRL for temporal graphs yields em-

beddings that encode the temporal evolution of the (role played

by the) nodes [31]. This temporal evolution may lead to different

structural roles than the static case (cf. Figure 1–(III)). Thus, static

NRL approaches cannot easily be adapted to temporal graphs.

Applications. A major application of temporal structural NRL is

on any node classification task where node interactions change over

time, and node labels are not homophily-driven, rather they depend

on structural properties of the graph. For instance, classifying nodes

1
We use the two terms interchangeably throughout the paper.

2
Nevertheless, the literature lacks in uniformity on this terminology. The term “struc-

tural” may refer to notions other than that of our interest. E.g., “global structural

information’’ or similar terms are used [9, 63], which correspond to higher-order

spatial proximity (i.e., proximity based on nodes’ 𝑑-hop neighborhoods), rather than

the actual structural role discussed in this work..

2

https://doi.org/XX.XX/XXX.XX
https://github.com/janetlayne2/Temporal-SIR-GN
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

A

B C

D

E F

A

B C

D

E F

(I) Proximity-based NRL (II) Structural NRL

A

B C

D

E F

G

H I

J

K L

𝑡1 𝑡2 𝑡2 𝑡3 𝑡2 𝑡2 𝑡4 𝑡4

(III) Temporal structural NRL

Figure 1: Illustration of various kinds of node representation learning

(NRL). Similarity in nodes’ colors denotes similarity in nodes’ embeddings.

(I) Proximity-based NRL recognizes {A, B, C} as similar, as they are physi-

cally close in the graph. The same holds for {D, E, F}. (II) Nodes {A, D} are
part of different connected components. Nonetheless, structural NRL recog-

nizes them as similar, as they have isomorphic 1-hop neighborhoods (or, as

formally explained in Section 4.2, there is an automorphism that maps A to

D, and vice versa). The same holds for {B, C, E, F}. (III) Edges are labeled

with timestamps. For simplicity, here is one timestamp per edge, but, in gen-

eral, an edge can be assigned multiple timestamps. Timestamps here come

with no particular constraints: they can be any positive real number such that

𝑡1 <𝑡2 <𝑡3 <𝑡4. Temporal structural NRL recognizes {A, D} as similar, as they

have isomorphic 1-hop neighborhoods in all the timestamps (or, as formally

explained in Section 4.2, there is a temporal automorphism that maps A to D,

and vice versa). Likewise, {G, J} are recognized as similar, as they both have

two neighbors in one timestamp, and no neighbors in the other timestamps.

Similar considerations hold for {B, E}, {C, F}, and {H, I, K, L}. Conversely, if
the temporal aspect is not considered, i.e., timestamps on edges are ignored,

very different (structural) embeddings would be yielded: {A, D, G, J} would

wrongly have identical embeddings, and {B, C, E, F, H, I, K, L} as well.

(users) of financial transaction graphs as (non-)fraudulent typically

relies on the the patterns of transactions issued by a user over

time [66]. Embeddings encoding the structural temporal evolution

of a graph are thus well-suited for such a fraud-detection task.

Similarly, in social-trust networks where nodes (users) express

(dis)trust opinions vs. other nodes over time, the goal is to classify

a user as trustful or not. This classification heavily relies on the

temporal structural patterns of the rating received by a user [34].

The biological domain has plenty of applications that can benefit

from temporal structural NRL. For instance, in dynamic protein-

interaction networks, classifying a protein (node) as, e.g., uncharac-

terized/verified depends on the structural patterns of temporal in-

teractions between that protein and the others in the network [19].

Further applications of temporal structural NRL include tasks

other than node classification as well. For instance, the prediction

of properties (e.g., centralities) that depend on time-varying struc-

tural characteristics of a graph, or problems like entity resolution,

alignment and summarization in temporal graphs [40, 72, 86].

Motivation. To the best of our knowledge, the prominent work

that may handle temporal structural NRL (at least to some extent) is

that by Liu et al. [41]. It employs a temporal graph neural network

(GNN) that is based on the notion of 𝑘-core, i.e., the maximal sub-

graph whose nodes have degree at least 𝑘 [4]. Apart from Liu et al.,

there exist several other temporal-GNN-based methods that can

potentially (be adapted to) capture structural roles, though they are

not specifically designed for structural NRL [12, 22, 36, 39, 44, 46,

50, 60, 62, 64, 78, 79, 87, 88, 98]. All such methods (including that by

Liu et al.) have limited efficiency, as they employ computationally-

expensive models, and limited effectiveness, due to the use of loss

functions that are not ideally suited for structural NRL.

Contributions. In this work, we tackle the problem of structural

NRL in temporal graphs. The goal is to generate a single embedding

for every node that encodes the temporal evolution of that node’s

structural role. The target structural roles are defined based on the

adaptation of graph isomorphism to the temporal setting.

Proposed method. We design Temporal SIR-GN, a novel unsuper-

vised approach that improves upon efficiency and effectiveness of

the state of the art. Temporal SIR-GN is inspired by SIR-GN [30],

a recently-introduced efficient and effective method for structural

NRL in static graphs. Temporal SIR-GN adopts SIR-GN’s idea of it-
eratively clustering and aggregating the representations of a node’s

neighbors, which in turn emulates the well-establishedWeisfeiler-

Lehman isomorphism test [81]. The main difference between our

approach and basic SIR-GN is that the aggregation of nodes’ rep-

resentations must now consider the temporal dimension. We ac-

complish this by computing the expected number of transitions

from a cluster 𝐶 to any other cluster 𝐶 ′
in the temporal sequence

of embeddings. A major challenge of this temporal aggregation

is that its naïve computation takes quadratic time in the number

of timestamps. We thus derive a factorization that converts the

quadratic cost to linear, without losing exactness. Clustering and

temporal aggregation are repeated for (at most) 𝑑 iterations, so as to

explore 𝑑 levels of depth of the temporal structure around a node.

Benefits of the proposed method include: (𝑖) it takes linear time in

the number of temporal edges, while the existing methods are

slower, both in terms of theoretical time complexity, and especially

in practice, due to their many additional maintenance costs; (𝑖𝑖) it

keeps in main memory one embedding per node, as opposed to

the state of the art, which typically needs to keep in memory one

embedding for every node and every timestamp; (𝑖𝑖𝑖) it is backed

by a theoretical analysis that formally shows how it preserves

key temporal-structural information; (𝑖𝑣) it employs no sequence-

learning models: besides enabling efficiency, this makes the method

lightweight and easy-to-implement.

Summary and roadmap. To summarize, in this work, we:

• Tackle the problem of temporal structural NRL (Section 2).

• Devise Temporal SIR-GN, a novel unsupervised approach to

temporal structural NRL that overcomes existing limitations

of efficiency and effectiveness (Section 3).

• Show how to perform temporal aggregation in Temporal SIR-
GN in linear time in the number of timestamps (Section 3.4).

• Prove theoretical properties about how Temporal SIR-GN
preserves temporal structural-role information (Section 4).

• Design testbeds to assess a method in temporal structural

NRL (Section 5). This is a contribution of per-se interest.

• Extensively test Temporal SIR-GN on both synthetic and real

datasets. Results attest its high efficiency and effectiveness

in classification and regression tasks (Sections 5.1–5.4).

Section 6 concludes the paper and discusses ideas for future work.

2 PRELIMINARIES AND BACKGROUND

Let G be a temporal graph G = (𝑉 ,𝑇 , E), where 𝑉 is a set of nodes,

𝑇 ⊆ R+
0
is a finite set of timestamps (where a timestamp is a positive

real number), E ⊆ 𝑉 × 𝑉 × 𝑇 is a set of temporal edges, i.e., the

set {(𝑢, 𝑣, 𝑡)} of all node pairs 𝑢, 𝑣 ∈ 𝑉 and timestamps 𝑡 ∈ 𝑇 such

that an edge exists between 𝑢 and 𝑣 in 𝑡 . Given a timestamp 𝑡 ∈ 𝑇 ,

𝐸𝑡 = {𝑢, 𝑣 ∈ 𝑉 | (𝑢, 𝑣, 𝑡) ∈ E} and 𝑉𝑡 = {𝑢 ∈ 𝑉 | ∃(𝑢, 𝑣) ∈ 𝐸𝑡 }
denote the set of static edges and nodes existing in 𝑡 , respectively,

and 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡) is the (graph) snapshot of 𝑡 , i.e., the static graph
3

corresponding to the projection of 𝐺 in 𝑡 . Let also 𝑇 (𝑢) = {𝑡 ∈ 𝑇 |
𝑢 ∈ 𝑉𝑡 } denote the timestamps in which 𝑢 ∈ 𝑉 exists, and T =

|∑𝑢∈𝑉 𝑇 (𝑢) |. Hereinafter, we assume G to be undirected. However,

handling directed graphs is an easy extension (cf. Section 3.5). The

main notations used in the paper are summarized in Table 1.

This temporal graph model is general enough to have edges arbi-

trarily (dis)appear over time, and be present in multiple timestamps.

2.1 Problem statement

We focus on a non-diachronic objective, i.e., generating a single

embedding for each node that encodes the evolution of that node’s

structural role over thewhole temporal graph. This differs from a di-

achronic objective [21], where computation of the final embeddings

requires producing and materializing an intermediate embedding

for all timestamps. The problem addressed in this work is:

Problem 1 (Temporal Structural NRL). Given a temporal

graph G = (𝑉 ,𝑇 , E), and a natural number ℎ ∈ N+, compute a

real-valued matrix 𝑅 ∈ R |𝑉 |×ℎ
, where every row 𝑅 [𝑢] corresponds

to the embedding (or representation) of node 𝑢, for all 𝑢 ∈ 𝑉 . Each

𝑅 [𝑢] encodes the temporal evolution of the structural role of 𝑢 in G.

We require the temporal structural role in Problem 1 to express

the fact that similar embeddings are assigned to nodes whose local

surrounding subgraphs (e.g., 𝑑-hop neighborhoods) are as isomor-

phic as possible. Isomorphism here is intended not only for nodes

and edges, but for the temporal dimension as well. A more detailed

yet formal discussion on the target structural roles is in Section 3.1.

2.2 State of the art and limitations

Existing approaches to temporal structural NRL are based on tem-

poral GNNs, and most employ sequence-learning models. To the

best of our knowledge, the prominent existing method that is (in

part) suited for temporal structural NRL is Liu et al.’s CTGCN [41].

It consists of a double-sequence-learning architecture, where Re-

current Neural Networks (RNNs) are nested into a Long Short-Term

Memory (LSTM). The latter has one cell per timestamp, and every

cell is composed (among others) of multiple RNNs. Each RNN pro-

cesses the 𝑘-cores of a graph snapshot. Multiple RNNs are stacked

into every LSTM cell, to capture 𝑑-hop neighborhood information.

The use of 𝑘-cores makesCTGCN able to capture structural roles, at

least to some extent. In fact, two nodes of the same (highest-order)

𝑘-core intuitively have structurally similar neigborhoods, even if

they are far away in the graph. However, being part of the same

𝑘-core is not always a signal of similar structural role: e.g., if the

neighbors that make two nodes belong to the same 𝑘-core are in

turn part of very different (highest-order) 𝑘-cores.

Other temporal-GNN-based approaches, though not explicitly

conceived for structural NRL, can potentially be adapted to it. In fact,

they generate embeddings by iteratively aggregating the embed-

dings of a node’s neighbors: this process may capture local isomor-

phisms, hence structural roles. Many approaches of this kind have

been devised [12, 22, 36, 39, 44, 46, 50, 60, 62, 64, 78, 79, 87, 88, 98].

They all share the same general design principle: GNNs yield indi-

vidual embeddings for every graph snapshot, and all these embed-

dings are then aggregated over time (e.g., via a sequence-learning

model). The differences between the various methods lie in the

design and combination of the individual building blocks.

Running time limitations. The time complexity of all the above

methods is mostly due to the processing of every graph snapshot

via a GNN, which overall takes Ω(𝑑 × ℎ × (|𝑉 | × |𝑇 | +∑
𝑡 ∈𝑇 𝐸𝑡)) =

Ω(𝑑 × ℎ × (|𝑉 | × |𝑇 | + |E |)) time. Ω(·) is used here because it is a

lower bound, as several “hidden” steps are not included in it, such

as computing the loss function (which may be expensive, e.g., for

an unsupervised graph-reconstruction loss), or the internal steps of

a sequence-learning model (e.g., handling the internal parameters

of every cell of an LSTM). In this regard, Liu et al.’s CTGCN comes

with a specific additional (non-negligible) 𝑘𝑚𝑎𝑥 factor, that is the

maximum number of 𝑘-cores in a snapshot (𝑘𝑚𝑎𝑥 = 𝑂 (|𝑉 |)).
Conversely, our method takes𝑂 (𝑑×(|E|×

√
ℎ+T×ℎ+|𝑉 |×ℎ

√
ℎ))

time (cf. Section 4.1). This gives a theoretical speed-up that is

considerable for large |𝑇 |, as in this case T ≪ |𝑉 | × |𝑇 |, and
√
ℎ ≪

|𝑇 |. In practice, the speed-up is much more evident (cf. Section 5.3),

due to the aforementioned occult costs of the existing methods.

Storage space limitations. Excluding the input graph, the above

methods typically require 𝑂 (|𝑇 | × |𝑉 | × ℎ) space, as an embedding

for every node and every timestamp has to be materialized and

kept in memory (e.g., during backpropagation). In contrast, our

Temporal SIR-GNmethod needs𝑂 (|𝑉 | × ℎ) space. This corresponds
to an 𝑂 (|𝑇 |) improvement, which is particularly appreciable when

the number of timestamps is relatively high.

Effectiveness limitations. The notion of 𝑘-core in Liu et al.’s

CTGCN [41] allows for (implicitly) capturing structural roles. How-

ever, the two loss functions of CTGCN are not ideally suited for

structural NRL. CTGCN’s first loss function is defined as the dis-

tance between nodes’ embeddings and nodes’ features (transformed

by neural-network layers). That loss is claimed to be structural-role-

preserving, but it comes with an important conceptual limitation:

it enforces the embeddings of any two nodes to be similar merely

if their features are similar, no matter the graph topology. At the

same time, CTGCN’s second loss is based on graph reconstruction,

whose use makes the method biased towards proximity.

Similarly, the other existing temporal-GNN-based approaches [12,

39, 44, 46, 50, 60, 62, 64, 78, 87, 88] employ either supervised losses

defined based on nodes’ labels or unsupervised losses based on

graph reconstruction. Both those losses are prone to learn spatial

proximity. Particularly, supervised losses enforce a node’s embed-

ding to be close to the embeddings of its majority-label neighbors.

One might utilize general structural-role-aware losses in those ar-

chitectures. Unfortunately, designing a loss of this kind is hard. To

our knowledge, the only existing attempt is aforementioned Liu

et al.’s one, which has the previously-discussed downsides.

2.3 Other related works

Proximity-based NRL in static graphs has its roots in the con-

text of matrix factorization [5, 59, 70]. A modern reinterpretation of

NRL, starting from the first decade of 2000s, has comprised methods

aimed at preserving 𝑑-hop reachability, co-occurrence in a random

walk, and Personalized PageRank [9, 24, 52, 68, 73, 91, 92, 96].

Structural NRL in static graphs includes approaches based on

attributed random walks [3], diffusion wavelets [14], Gaussian em-

bedding [51], structural identity [54], graphlets [56, 58], hybrid

methods [69], and SIR-GN [30], the precursor of our approach.

4

Table 1: Main notations used in this paper

General notations

G= (𝑉,𝑇,E) Temporal graph (𝑉 : vertices;𝑇 : timestamps; E: temporal edges)

𝐺𝑡= (𝑉𝑡 ,𝐸𝑡) Graph snapshot of timestamp 𝑡

𝑇 (𝑢) Set of timestamps in which node𝑢 exists

T ∑
𝑢∈𝑉 |𝑇 (𝑢) |

𝑑 Depth of exploration (i.e., max iterations of Temporal SIR-GN)
ℎ Dimensionality of the node embeddings

𝑅 Matrix containing the node embeddings (representations)

Notations from the proposed SIR-GN (all vectors are row vectors)

𝑀[𝑥] For any matrix𝑀 , the row of𝑀 corresponding to node 𝑥

𝛼 Parameter to modulate temporal effect in the node representations

𝐶𝑅 Matrix containing the node representations from the current iteration

𝐷 Matrix containing nodes’ description vectors (Def. 3.3)

𝑛𝑅𝑒𝑝 Number of distinct node representations (from the previous iteration)

𝑐 Number of clusters of node representations

𝐶𝐶 Centers of the clusters of node representations

Γ𝑢 Vector of squared Euclidean distances from node𝑢 to cluster centers

𝑁 𝑡
𝑢 Neighborhood description vector (Def. 3.4)

𝐶𝐹𝑢 Cluster frequency vector (Def. 3.5)

𝐶𝑇𝑢 Cluster transition matrix (Def. 3.7)

𝑍𝑡
𝑢 Auxiliary vector to speed-up the computation of𝐶𝐹𝑢

𝑛𝑏𝑟 (𝑢, 𝑡) Set of neighbors of node𝑢 at timestamp 𝑡

KMeans() Function executing K-Means clustering algorithm

Distance() Function computing distances to cluster centers

MinMax() Function computing min-max normalization of a matrix

Graph Neural Networks (GNNs) have been widely employed

in NRL [6, 25, 32, 61, 75, 76, 83, 89]. GNNs yield embeddings by

iteratively aggregating the embeddings of a node’s neighbors. As

such, they have the potential of capturing structural-role similarity.

Nevertheless, major obstacles for GNNs to be truly structural-role-

aware are the neighborhood-sampling trick, and the loss functions

that are not appropriate for structural NRL (cf. Section 2.2).

For a more comprehensive overview of the vast literature on

NRL in static graphs, we refer to [8, 10, 29, 57, 84, 97].

Proximity-based NRL in temporal graphs [15] includes meth-

ods that enforce embedding alignment between consecutive snap-

shots [15, 65, 90, 101], or decompose the adjacency matrices of the

snapshots [43, 93, 95], or approaches based on temporal random

walks [27, 45, 47, 48, 53, 94], temporal point processes [16, 42, 71, 99,

100, 102], causal anonymous walks (for edge embedding) [80].

3 PROPOSED METHOD: TEMPORAL SIR-GN
3.1 Design principles

Target structures and desiderata. A principled way to charac-

terize structural roles in the static setting is via the notion of graph

isomorphism [28, 89]: nodes are recognized as structurally similar

based on how much their surrounding subgraphs are isomorphic.

For this reason, here we identify our target temporal structural

patterns by adapting graph isomorphism to the temporal setting.

Definition 3.1 (Isomorphism, subgraph isomorphism, automor-

phism). An isomorphism between graphs 𝐺1 = (𝑉1, 𝐸1), 𝐺2 =

(𝑉2, 𝐸2) is a permutation function 𝐹 : 𝑉1 → 𝑉2, i.e., a function that

assigns to each node 𝑢1 ∈ 𝑉1 one and only one node 𝑢2 ∈ 𝑉2, such

that (𝐹 (𝑢1), 𝐹 (𝑣1)) ∈ 𝐸2 if and only if (𝑢1, 𝑣1) ∈ 𝐸1. A subgraph

isomorphism from 𝐺 to 𝐺 ′
is an isomorphism between 𝐺 and a

subgraph of𝐺 ′
. An automorphism in𝐺 is an isomorphism between

𝐺 and 𝐺 itself. Nodes 𝑢,𝑢 ′ of 𝐺 are said automorphic if there exists

an automorphism in 𝐺 mapping 𝑢 to 𝑢 ′ (and vice versa).

Based on the above definition, nodes 𝑢 and 𝑢 ′ are recognized
as automorphic they share identical degree, and all their 𝑘-hop

neighbors share identical degree, for all 𝑘 = 1, . . . , 𝑘𝑚𝑎𝑥 (𝑘𝑚𝑎𝑥 is

the maximum number of hops possible from both nodes). An auto-

morphism for the toy graph in Figure 1-(I) is 𝐹 (A) =D, 𝐹 (B) =E,
𝐹 (C)=C, 𝐹 (D)=A, 𝐹 (E)=B, 𝐹 (F)=F.

Definition 3.2 (Temporal isomorphism, subgraph isomorphism, au-

tomorphism). A temporal isomorphism between temporal graphs

G1= (𝑉1,𝑇1, E1),G= (𝑉2,𝑇2, E2) is a permutation functionF : 𝑉1 →
𝑉2 such that, for every 𝑢 ∈𝑉1, there exists Δ𝑢 ∈ (−∞, +∞) such that

(F (𝑢), F (𝑣), 𝑡 + Δ𝑢) ∈ E2 if and only if (𝑢, 𝑣, 𝑡) ∈ E1. A temporal

subgraph isomorphism from G to G′
is a temporal isomorphism be-

tween G and a temporal subgraph of G′
. A temporal automorphism

in G is a temporal isomorphism between G and G itself. Nodes

𝑢,𝑢 ′ of G are said temporally-automorphic if there exists a temporal

automorphism in G mapping 𝑢 to 𝑢 ′ (and vice versa).

Let us elaborate on the definition of temporal automorphism.

Similar considerations hold for temporal (subgraph) isomorphism.

Temporal automorphism extends the notion of automorphism to

the temporal setting by allowing automorphism to occur across

graph snapshots. Δ𝑢 is the temporal shift between snapshots across

which an automorphism should hold in order to have a temporal

automorphism. Specifically, if Δ𝑢 =0, for having a temporal auto-

morphism F that maps 𝑢 to 𝑢 ′, there must exist an automorphism

𝐹𝑡 that maps 𝑢 to 𝑢 ′ in the same snapshot occurring at timestamp 𝑡 ,

for all 𝑡 . Instead, if Δ𝑢 >0 (resp., Δ𝑢 <0) the automorphismmapping

𝑢 to 𝑢 ′ is required across the snapshot at timestamp 𝑡 and the snap-

shot occurring an amount |Δ𝑢 | of time after (resp., before) 𝑡 , for all

𝑡 . For instance, assuming 𝑡1=1, 𝑡2=2, 𝑡3=3, 𝑡4=4, a temporal auto-

morphism for the graph in Figure 1-(III) is F (A) =D, F (B) = E,
F (C) = F, F (D) = A, F (E) = B, F (F) = C, F (G) = J, F (H) = K,
F (I) = L, F (J) = G, F (K) = H, F (L) = I; with ΔA = ΔB = ΔC = 1,

ΔD=ΔE=ΔF=−1, ΔG=ΔH = ΔI=2, ΔJ=ΔK=ΔL=−2. As a key dif-

ference to the static setting, though there exists an automorphism

(ignoring timestamps) mapping B to C, no temporal automorphism

exists that maps those two nodes to one another, because they

are temporally structurally different from the perspective of their

common neighbor A (i.e., B comes after C in time).

Whenever any two nodes 𝑢 and 𝑣 are temporally-automorphic,

they are temporally structurally identical to each other. This is

a limit case, for which a desirable requirement is to have identi-

cal embeddings produced for 𝑢 and 𝑣 . More generally, the closer

two nodes are to be temporally automorphic, the more structurally

similar they are (cf Figure 2): we take this as our main desider-

atum in designing an algorithm for the Temporal Structural

NRL problem. In Section 4, we show that our algorithm possesses

theoretical guarantees for the limit case of temporally-automorphic

nodes, while it comes with empirical evidence in the general case.

Algorithm rationale. The proposed Temporal SIR-GN method

resembles the approach in SIR-GN [30], a method for structural

NRL in static graphs that has been shown to achieve high effec-

tiveness and efficiency. The logic underlying SIR-GN emulates the

Weisfeiler-Lehman (WL) algorithm [26, 81], a popular method de-

signed (among others) to test for graph isomorphism.WL compares

structural representations generated for nodes in separate graphs.

These representations are computed by iteratively updating the cur-

rent representations via aggregation of additional layers of nodes’

neighborhoods. Representations are stored as a multiset that is then

5

A

B

C

1 2

3

1
1 2

3

1 2

X

x4

x1

x2 x3

t1 t1
t1+1

t1
t1+1

Y

y4

y1

y2 y3

t1 t1

t1
t1+1

(I) (II) (III)

Figure 2: (I) Toy temporal graph G. For simplicity, G has one timestamp

per edge (though, in general, edges may have multiple timestamps). Lettered

nodes (A, B, C) are the ones of interest. Intuitively,A is closer to be temporally-

automorphic to B than C, as A and B share two temporal neighbors, while A
and C only one. This can be better observed with the maximal temporally

isomorphic subgraphs in (II)–(III). (II) GAB: maximal temporal graph that is

temporally subgraph isomorphic to G, and such that there exist two temporal

subgraph isomorphisms F1, F2 that map the same node of GAB to A and B,
respectively. 𝑡1 is any positive real number. F1, F2 are: F1 (X) = A, F1 (𝑥1) =
C, F1 (𝑥2) = 1, F1 (𝑥3) = 2, F1 (𝑥4) = B; F2 (X) = B, F2 (𝑥1) = C, F2 (𝑥2) = 1,

F2 (𝑥3) = 2, F2 (𝑥4) = A. (III) GAC: same as (II), but for nodes A and C. The
temporal subgraph isomorphisms F1, F2 in this case are: F1 (Y) =A, F1 (𝑦1) =
C, F1 (𝑦2) = 1, F1 (𝑦3) = 2, F1 (𝑦4) = B; F2 (Y) = C, F2 (𝑦1) = A, F2 (𝑦2) = 1,

F2 (𝑦3) = 2, F2 (𝑦4) = B. Δ is 1− 𝑡1 for all the nodes and temporal subgraph

isomorphisms.

used as a hash for unique structures (referred to as colors). Updat-

ing is performed until the number of unique hashes is unchanged.

SIR-GN capitalizes on the aptitude of WL to capture structural

information, but with important modifications. First, SIR-GN clus-

ters node representations to control the overall representation size;

then the probability of membership in each cluster is calculated for

each node representation. Second, rather than aggregating neigh-

bors via multisets and hashing, each neighbor’s representation is

summed to form nodes’ updated representations. This sum aggre-

gation generates a node representation at iteration 𝑖 wherein each

component of the vector correspondsWE to the expected number of

𝑖-hop neighbors of the node that are in a specific structural cluster.

Temporal SIR-GN can be viewed as the temporal version of SIR-
GN. The idea of emulating SIR-GN, and, in turn,WL appears natural
in order to identify temporal structures resembling (sub)graph iso-

morphism. Clustering and neighbor aggregation in Temporal SIR-
GN are (mostly) borrowed from SIR-GN. A major novelty lies in

the temporal aggregation, which is not present in SIR-GN, as it
handles static graphs. This is a technically challenging step, as it in

principle requires a pairwise comparison between timestamps. In

the following, we show how to overcome this quadratic explosion.

3.2 Main loop

The pseudocode of Temporal SIR-GN is shown in Algorithm 1,

while Table 1 summarizes its main notations, and Figure 3 pro-

vides an example of its execution. The algorithm takes as input a

temporal graph G = (𝑉 ,𝑇 , E), and three parameters (all explained

in more detail during the description of the algorithm):

• 𝑑 ∈ N+: an upper bound on the number of iterations.

• 𝑐 ∈ N+: number of clusters of node representations, which

determines the dimensionalityℎ of the embeddings (ℎ=𝑐2+𝑐).
• 𝛼 ∈ R+ modulates the impact of the temporal aggregation.

The suggested default parameters are 𝛼 = 1 and 𝑑 = ∞, so as to

let the method run until the stopping criterion is met. Parameter

𝑐 is set so that the resulting 𝑐2 + 𝑐 embedding dimensionality is

the closest to the desired ℎ. Specifically, one can set 𝑐 to either the

largest integer such that 𝑐2 + 𝑐 ≤ ℎ, or the smallest integer such

Algorithm 1 Temporal SIR-GN

Input: Temporal graph G = (𝑉 ,𝑇 , E) ; natural numbers𝑑, 𝑐 > 0; real number𝛼 ≥ 0

Output: Matrix 𝑅 ∈ R|𝑉 |×(𝑐2+𝑐)
containing the embeddings (representations) of all

the nodes in𝑉

1: 𝑖 = 0; 𝑛𝑅𝑒𝑝 = 0; initialize a matrix 𝐷0 ∈ R|𝑉 |×𝑐
to 1/𝑐

2: 𝑅0 = TemporalAggregation(G, 𝑐, 𝐷0, 𝛼)
3: while 𝑖 < 𝑑 ∧ 𝑛𝑅𝑒𝑝 < | {𝑅𝑖

[𝑢] | 𝑢 ∈ 𝑉 } | do
4: 𝑛𝑅𝑒𝑝 = | {𝑅𝑖

[𝑢] | 𝑢 ∈ 𝑉 } |
5: 𝐷𝑖 = ClusteringNodeDescription(𝑉 , 𝑅𝑖 , 𝑐)
6: 𝑅𝑖+1 = TemporalAggregation(G, 𝑐, 𝐷𝑖 , 𝛼)
7: 𝑖 = 𝑖 + 1

8: end while

9: 𝑅 = 𝑅𝑖−1
, if 𝑛𝑅𝑒𝑝 ≥ | {𝑅𝑖

[𝑢] | 𝑢 ∈ 𝑉 } |; otherwise, 𝑅 = 𝑅𝑖

10: function ClusteringNodeDescription(𝑉 , 𝑅, 𝑐)

11: Initialize a matrix 𝐷 ∈ R|𝑉 |×𝑐
to 0 ⊲ Def. 3.3

12: 𝑅𝑁 = MinMax(𝑅)
13: 𝐶𝐶 = KMeans(𝑅𝑁, 𝑐) ⊲ Clustering step

14: for all 𝑢 ∈ 𝑉 do ⊲ Node description loop

15: Γ𝑢 = Distance(𝑅𝑁 [𝑢] ,𝐶𝐶)
16: 𝐷 [𝑢] = (max(Γ𝑢) − Γ𝑢)/(max(Γ𝑢) − min(Γ𝑢))
17: 𝐷 [𝑢] = 𝐷 [𝑢]/sum(𝐷 [𝑢])
18: end for

19: return 𝐷

20: end function

21: function TemporalAggregation(G, 𝑐, 𝐷, 𝛼)

22: Initialize matrix𝐶𝑅 ∈ R|𝑉 |×(𝑐2+𝑐)
to 0

23: for all 𝑢 ∈ 𝑉 do

24: Let [𝑡1, . . . , 𝑡 |𝑇 (𝑢) |] be𝑇 (𝑢) sorted in ascending order

25: Initialize matrix𝐶𝑇𝑢∈R𝑐×𝑐 and vectors𝐶𝐹𝑢 ,𝑍
𝑡 |𝑇 (𝑢) |
𝑢 ∈R𝑐 to 0

26: 𝑁
𝑡 |𝑇 (𝑢) |
𝑢 =

∑
𝑣∈𝑛𝑏𝑟 (𝑢,𝑡 |𝑇 (𝑢) |) 𝐷 [𝑣]

27: for all 𝑎 from |𝑇 (𝑢) | − 1 to 1 do ⊲ Temporal aggregation loop

28: 𝑁
𝑡𝑎
𝑢 =

∑
𝑣 ∈𝑛𝑏𝑟 (𝑢,𝑡𝑎) 𝐷 [𝑣] ⊲ Neighbor aggregation (Def. 3.4)

29: 𝐶𝐹𝑢 = 𝐶𝐹𝑢 + 𝑁
𝑡𝑎
𝑢 ⊲ Def. 3.5

30: 𝑍
𝑡𝑎
𝑢 = 𝑒

−(𝑡𝑎+1
−𝑡𝑎)

𝛼

(
𝑁

𝑡𝑎+1

𝑢 + 𝑍
𝑡𝑎+1

𝑢

)
⊲ Lemma 3.8

31: 𝐶𝑇𝑢 = 𝐶𝑇𝑢 + (𝑁 𝑡𝑎
𝑢)⊤𝑍 𝑡𝑎

𝑢 ⊲ Def. 3.7; Lemma 3.9

32: end for

33: 𝐶𝑅 [𝑢] = concatenate(flatten(𝐶𝑇𝑢),𝐶𝐹𝑢)
34: end for

35: return𝐶𝑅

36: end function

that 𝑐2 +𝑐 ≥ ℎ, and use standard tricks if 𝑐2 +𝑐 ≠ ℎ. If 𝑐2 +𝑐 < ℎ, the

embeddings can be padded with zeros. If 𝑐2 + 𝑐 > ℎ, dimensionality

reduction techniques can be employed (as done, e.g., in [14]).

The main principle of Temporal SIR-GN is to identify 𝑐 clusters

of nodes’ temporal structural roles, and let the representation of

a node reflect how well its 𝑘-hop neighborhood (𝑘 ≤ 𝑑) complies

with those clusters. To accomplish this, the first step consists in

computing what we term nodes’ description vectors:

Definition 3.3 (Description vector). Given 𝑐 clusters of node rep-

resentations, the description vector 𝐷 [𝑢] of a node 𝑢 ∈ 𝑉 is a 𝑐-

dimensional vector, where each component 𝑗 represents the proba-

bility that 𝑢’s representation belongs to cluster 𝑗 .

After they are initialized to 1/𝑐 (Line 1), at each iteration of the

main loop (Line 3) description vectors are (𝑖) updated in terms of the

new clustering of node representations (Line 5), and (𝑖𝑖) temporally

aggregated, so as to form the actual node representations of the

current iteration (Line 6). Clustering and temporal aggregation are

executed for the lesser of either the user-input 𝑑 iterations or until a

stopping criterion is met. The stopping criterion is defined as with

the WL algorithm, wherein the current number of unique node

6

Input

A

B D

C

𝑡2 𝑡1, 𝑡2
𝑡3

𝑡2 𝑡3

𝑐 = 3, 𝛼 = 1

𝑡1 = 4

𝑡2 = 7

𝑡3 = 16

−→
Clustering

NodeDescription

(Alg. 1, Line 10)

Description vectors (Def. 3.3):

Node 𝐶1 𝐶2 𝐶3

A 0.2 0.5 0.3

B 0.7 0.2 0.1

C 0.4 0.4 0.2

D 0.1 0.1 0.8

Neighbor aggregation ↓(Alg. 1, Line 28)

Neighborhood description vectors (Def. 3.4):

Node 𝑁 𝑡
1 𝑁 𝑡

2 𝑁 𝑡
3

A 0.1 0.1 0.1 0.8 0.3 0.9 0 0 0

B 0 0 0 0.6 0.9 0.5 0.1 0.1 0.8

C 0 0 0 0.7 0.2 0.1 0.1 0.1 0.8

D 0.2 0.5 0.3 0.2 0.5 0.3 1.1 0.6 0.3

TemporalAggregation ↓ Example for node D
(Alg. 1, Line 21) shown below

D’s cluster frequency vector (Def. 3.5): 𝐶𝐹D = 𝑁
𝑡
1

D +𝑁 𝑡
2

D +𝑁 𝑡
3

D = [1.5 1.6 0.9]

D’s cluster transition matrix (Def. 3.7):

𝐶𝑇D =

(𝑒−(16−7) × [1.1 0.6 0.3]⊤× [0.2 0.5 0.3]+
+ 𝑒−(16−4) × [1.1 0.6 0.3]⊤× [0.2 0.5 0.3]+
+𝑒−(7−4) × [0.2 0.5 0.3]⊤× [0.2 0.5 0.3])

=

[
2.02e-3 5.05e-3 3.03e-3

4.99e-3 1.25e-2 7.49e-3

2.99e-3 7.49e-3 4.49e-3

]

↓ D’s representation (Alg. 1, Line 33):

𝐶𝑅
[D]= [2.02e-3 5.05e-3 3.03e-3 4.99e-3 1.25e-2 7.49e-3 2.99e-3 7.49e-3 4.49e-3 1.5 1.6 0.9]

Figure 3: Run-through example of a single iteration of Algorithm 1.

representations (𝑛𝑅𝑒𝑝) is no longer increasing. Note that 𝑛𝑅𝑒𝑝 is

expected to increase iteration after iteration, because of increasing

heterogeneity in the clusters, and, in turn, higher variance in the

description vectors. This is in accordance with WL, and it is an

opposite phenomenon to, e.g., the classic over-smoothing issue in

GNNs [11]. The representations yielded at iteration 𝑖 (𝑅𝑖) are input

to iteration 𝑖+1. Once the stopping criterion is met at iteration 𝑘 ≤ 𝑑 ,

the representation of a node expresses the temporal evolution of

that node’s structure measured out to its 𝑘-hop neighborhood. Next,

we describe clustering and temporal aggregation.

3.3 Clustering and node description

The ClusteringNodeDescription function (Line 10) first parti-

tions the current node representations into 𝑐 clusters (Line 13).

Min-max normalization (Line 12) is performed beforehand, as a

common preliminary step in clustering. As a clustering algorithm,

we employ K-Means. This can be, however, replaced with any other

algorithm that produces 𝑐 cluster centers in the form of numerical

vectors. Then, the new description vectors are computed (Line 14).

Specifically, each component of the description vector 𝐷 [𝑢] of node
𝑢 equals to the squared Euclidean distance from 𝑢 to any cluster

center (Line 15). These distances are in turn converted to the prob-

abilities of membership in the various clusters (Lines 16–17).

3.4 Temporal aggregation

The TemporalAggregation function (Line 21) first computes the

neighborhood description vectors (Line 28):

Definition 3.4 (Neighborhood description vector). The neighbor-

hood description vector 𝑁 𝑡
𝑢 of a node𝑢 ∈ 𝑉 at timestamp 𝑡 ∈ 𝑇 (𝑢) is a

𝑐-dimensional vector, where each component 𝑗 is the expected num-

ber of neighbors of 𝑢 at timestamp 𝑡 whose representation belongs

to cluster 𝑗 of node representations. That is, 𝑁 𝑡
𝑢 =

∑
𝑣∈𝑛𝑏𝑟 (𝑢,𝑡) 𝐷 [𝑣] .

The algorithm then computes the cluster frequency vector (Line 29):

Definition 3.5 (Cluster frequency vector). The cluster frequency

vector 𝐶𝐹𝑢 of a node 𝑢 ∈ 𝑉 is a 𝑐-dimensional vector, where

each component 𝑗 is the expected number of times cluster 𝑗 ap-

pears in 𝑢’s neighborhood over all the timestamps. That is, 𝐶𝐹𝑢 =∑
𝑡 ∈𝑇 (𝑢)

∑
𝑣∈𝑛𝑏𝑟 (𝑢,𝑡) 𝐷 [𝑣] =

∑
𝑡 ∈𝑇 (𝑢) 𝑁

𝑡
𝑢 .

𝐶𝐹𝑢 will be part of the ultimate node representations (see below).

However, it contains solely information aggregated over time. We

thus complement𝐶𝐹𝑢 with the cluster transition matrix 𝐶𝑇𝑢 , which

keeps track of the temporal transitions 𝜏 𝑗𝑙 among clusters, occurring

within the neighborhood of 𝑢:

Definition 3.6 (Cluster temporal transition). Given clusters 𝑗 and

𝑙 of node representations, a cluster temporal transition 𝜏 𝑗𝑙 between 𝑗

and 𝑙 within the neighborhood of a node𝑢 ∈ 𝑉 is the expected num-

ber of times 𝑗 is observed to come before 𝑙 in time in 𝑢’s neighbor-

hood. That is, 𝜏 𝑗𝑙 =
∑
𝑡,𝑡 ′∈𝑇 (𝑢),𝑡 ′>𝑡

∑
𝑣∈𝑛𝑏𝑟 (𝑢,𝑡)

∑
𝑣′∈𝑛𝑏𝑟 (𝑢,𝑡 ′) 𝐷 [𝑣] [𝑗]

× 𝐷 [𝑣′] [𝑙] =
∑
𝑡,𝑡 ′∈𝑇 (𝑢),𝑡 ′>𝑡 𝑁

𝑡
𝑢 [𝑗] × 𝑁 𝑡 ′

𝑢 [𝑙].

The rationale of the above definition is as follows. For times-

tamps 𝑡, 𝑡 ′, the expected number of times cluster 𝑗 is observed in

𝑢’s neighborhood at timestamp 𝑡 and cluster 𝑙 is observed in 𝑢’s

neighborhood at 𝑡 ′ is 𝑁 𝑡
𝑢 [𝑗] ×𝑁 𝑡 ′

𝑢 [𝑙]. As 𝜏 𝑗𝑙 is the expected number

of times 𝑗 is observed to come before 𝑙 in time in general, here is

the sum of 𝑁 𝑡
𝑢 [𝑗] × 𝑁 𝑡 ′

𝑢 [𝑙] over all 𝑡 ′> 𝑡 . Intuitively, 𝜏 𝑗𝑙 expresses
how often a structural pattern (cluster) 𝑗 within a node’s neighbors

gets to another pattern 𝑙 in the future. As such, cluster temporal

transitions capture the temporal evolution of structural patterns.

In order to smooth the contribution of distant timestamps, we

also include a time elapse term 𝑒−(𝑡
′−𝑡) ∈ [0, 1]. The idea is that a

large distance between 𝑡 and 𝑡 ′ yields a lower contribution of the

𝑡 ′−𝑡 interval to the aggregation, and vice versa. It can be interpreted
as the probability that a cluster temporal transition occurs from

𝑡 to 𝑡 ′. Additionally, we use a parameter 𝛼 ≥ 0 to modulate the

impact of the temporal aggregation on the resulting embeddings

(explained below). This leads to the following ultimate definition:

Definition 3.7 (Cluster transitionmatrix). Given a real value𝛼 ≥ 0,

the cluster transition matrix 𝐶𝑇𝑢 of a node 𝑢 ∈ 𝑉 is a (𝑐 × 𝑐)-
dimensional matrix, where every [𝑗, 𝑙] corresponds to the cluster

temporal transition 𝜏 𝑗𝑙 , weighted by 𝑒
−(𝑡′−𝑡)

𝛼 :

𝐶𝑇𝑢 =
∑

𝑡,𝑡′∈𝑇 (𝑢), 𝑡′>𝑡 𝑒
−(𝑡′−𝑡)

𝛼 (𝑁 𝑡
𝑢)⊤𝑁 𝑡′

𝑢 . (1)

Ultimate node representations. The cluster transition matrix

𝐶𝑇𝑢 is flattened (by concatenating its rows), and further concate-

nated to the cluster frequency vector 𝐶𝐹𝑢 . This forms the final

node representation (embedding) 𝐶𝑅 [𝑢] of node 𝑢 at the current

iteration of Temporal SIR-GN (Line 33). Specifically, 𝐶𝑅 [𝑢] is a
(𝑐2 + 𝑐)-dimensional vector, where the first 𝑐2

components repre-

sent the expected number of temporal transitions from each cluster

of node representations to each other cluster, within 𝑢’s neighbor-

hood. The remaining 𝑐 components represent the overall expected

number of times each cluster appears in 𝑢’s neighborhood.

7

A large or small 𝛼 makes 𝑒
−(𝑡′−𝑡)

𝛼 close to 1 or 0, respectively. The

first case is equivalent to have no time elapse term at all. The second

case makes 𝐶𝑇𝑢 = 0: this way the ultimate node representations

will contain temporally-flattened information only (due to 𝐶𝐹𝑢).

Linear time temporal aggregation.Anaïve computation of Equa-

tion (1) takes quadratic time in the number |𝑇 (𝑢) | of timestamps in

which a node 𝑢 exists. This may lead to unaffordable running time

for even moderate number of timestamps. Here, we show how to

shorten this computation to linear. Let [𝑡1, . . . , 𝑡 |𝑇 (𝑢) |] be the times-

tamps in 𝑇 (𝑢) sorted in ascending order. Also, for any 𝑡 ∈ 𝑇 (𝑢), let
𝑍 𝑡
𝑢 be a 𝑐-dimensional auxiliary vector defined as:

𝑍 𝑡
𝑢 =

{
0, if 𝑡 = 𝑡 |𝑇 (𝑢) | ,∑

𝑡′∈𝑇 (𝑢), 𝑡′>𝑡 𝑒
−(𝑡′−𝑡)

𝛼 𝑁 𝑡′
𝑢 , if 𝑡 < 𝑡 |𝑇 (𝑢) | .

(2)

The following lemma shows how to compute 𝑍 𝑡
𝑢 incrementally:

Lemma 3.8. For every 𝑎 = 1, . . . ,𝑇 (𝑢) − 1, it holds that 𝑍
𝑡𝑎
𝑢 =

𝑒
−(𝑡𝑎+1

−𝑡𝑎)
𝛼

(
𝑁
𝑡𝑎+1

𝑢 + 𝑍
𝑡𝑎+1

𝑢

)
.

Proof.

𝑍
𝑡𝑎
𝑢 =

∑
𝑏=𝑎+1,..., |𝑇 (𝑢) | 𝑒

−(𝑡𝑏−𝑡𝑎)
𝛼 𝑁

𝑡𝑏
𝑢 {Eq. (2)}

= 𝑒
−(𝑡𝑎+1

−𝑡𝑎)
𝛼 𝑁

𝑡𝑎+1

𝑢 +∑
𝑏=𝑎+2,..., |𝑇 (𝑢) | 𝑒

−(𝑡𝑏−𝑡𝑎+𝑡𝑎+1
−𝑡𝑎+1

)
𝛼 𝑁

𝑡𝑏
𝑢

= 𝑒
−(𝑡𝑎+1

−𝑡𝑎)
𝛼 𝑁

𝑡𝑎+1

𝑢 + 𝑒
−(𝑡𝑎+1

−𝑡𝑎)
𝛼

∑
𝑏=𝑎+2,..., |𝑇 (𝑢) | 𝑒

−(𝑡𝑏−𝑡𝑎+1
)

𝛼 𝑁
𝑡𝑏
𝑢

= 𝑒
−(𝑡𝑎+1

−𝑡𝑎)
𝛼

(
𝑁
𝑡𝑎+1

𝑢 + 𝑍
𝑡𝑎+1

𝑢

)
. □

The next further lemma shows how to express 𝐶𝑇𝑢 in terms of 𝑍 𝑡
𝑢 :

Lemma 3.9. It holds that 𝐶𝑇𝑢 =
∑
𝑡 ∈𝑇 (𝑢) (𝑁 𝑡

𝑢)⊤𝑍 𝑡
𝑢 .

Proof.

𝐶𝑇𝑢 =
∑
𝑡,𝑡 ′∈𝑇 (𝑢), 𝑡 ′>𝑡 𝑒

−(𝑡′−𝑡)
𝛼 (𝑁 𝑡

𝑢)⊤𝑁 𝑡 ′
𝑢 {Eq. (1)} □

=
∑
𝑡 ∈𝑇 (𝑢) (𝑁 𝑡

𝑢)⊤
∑
𝑡 ′∈𝑇 (𝑢), 𝑡 ′>𝑡 𝑒

−(𝑡′−𝑡)
𝛼 𝑁 𝑡 ′

𝑢

=
∑
𝑡 ∈𝑇 (𝑢) (𝑁 𝑡

𝑢)⊤𝑍 𝑡
𝑢 . {Eq. (2)} □

Given these lemmas, it is easily observed that Temporal SIR-GN
performs a sound linear time computation of 𝐶𝑇𝑢 :

Theorem 3.10. Lines 30–31 of Algorithm 1 soundly compute 𝐶𝑇𝑢 .

Proof. This section of the algorithm processes all the times-

tamps in 𝑇 (𝑢) is descending order. This way, 𝑍
𝑡𝑎
𝑢 can be com-

puted from 𝑍
𝑡𝑎+1

𝑢 (Line 30), according to Lemma 3.8 (starting from

𝑍
𝑡 |𝑇 (𝑢) |
𝑢 = 0, Line 25).𝐶𝑇𝑢 is then computed according to Lemma 3.9

(Line 31). Note that, to compute 𝐶𝑇𝑢 , timestamps can be processed

in any order, including the descending one used here. □

3.5 Extensions

We discuss here preliminary ideas to handle alternative settings.

Directed graphs. Separately generate representations as with the

undirected method for each node’s in and out edges, and concate-

nate both into a single representation.

Node labels/attributes. Concatenate them to the embeddings at

each iteration (use one-hot encoding, if needed). This way, they can

exert influence on the clustering, and, as such, on the embeddings.

Inductive setting. This setting refers to computing a “model” that

can be used to yield embeddings for unseen nodes, or, in the most

general case, for the nodes of an entire new temporal graph
ˆG. In

the context of Temporal SIR-GN, the model corresponds to the

vector𝐶𝐶 of cluster centers that have been produced at the end of a

training execution of the algorithm on a temporal graph other than

ˆG. To get the node embeddings of
ˆG, it suffices to run Algorithm 1

by keeping cluster centers in Line 13 fixed and set to 𝐶𝐶 .

Time-interval representations. By default, Temporal SIR-GN
generates embeddings that are representative of all the temporal

snapshots {𝐺𝑡 }𝑡 ∈𝑇 of the input temporal graph G = (𝑉 ,𝑇 , E). To
have embeddings specific for a time interval (or a set of timestamps)

𝑇 ′ ⊆ 𝑇 , one can simply take the temporal graph G′ = (𝑉 , E ′,𝑇 ′),
E ′ = {(𝑢, 𝑣, 𝑡) ∈ E | 𝑡 ∈ 𝑇 ′} composed of all the snapshots corre-

sponding to timestamps in 𝑇 ′
, and run the algorithm on G′

.

4 ALGORITHM ANALYSIS

In this section, we analyze the proposed Temporal SIR-GN algo-

rithm, from both a theoretical and an empirical point of view.

4.1 Computational complexity

Time complexity. The ClusteringNodeDescription function

(Line 10) runs K-Means on the rows of matrix 𝑅𝑁 ∈ R |𝑉 |×(𝑐2+𝑐)
,

with number of clusters set to 𝑐 . This takes𝑂 (|𝑉 | ×𝑐3) time (by rea-

sonably assuming the number of K-Means iterations is a constant).

Then (Line 14), it computes distances between node representa-

tions and cluster centers, plus some normalization of the resulting

vectors. This again takes 𝑂 (|𝑉 | × 𝑐3) time, which corresponds to

the overall time complexity of ClusteringNodeDescription.

The runtime of the TemporalAggregation function is domi-

nated by the steps at Line 28 and 31. In the former, neighbor ag-

gregation is performed, which takes, for a node 𝑢 and timestamp

𝑡 , 𝑂 (𝑐 × |𝑛𝑏𝑟 (𝑢, 𝑡) |) time, as it sums up a number |𝑛𝑏𝑟 (𝑢, 𝑡) | of 𝑐-
dimensional vectors. This is repeated for every node 𝑢 and every

timestamp 𝑡 ∈ 𝑇 (𝑢), which leads to overall 𝑂 (∑𝑢∈𝑉
∑
𝑡 ∈𝑇 (𝑢) 𝑐 ×

|𝑛𝑏𝑟 (𝑢, 𝑡) |) =𝑂 (|E | ×𝑐) time. The step at Line 31 aggregates (𝑐 ×𝑐)-
dimensional matrices for every node 𝑢 ∈ 𝑉 and over all timestamps

𝑡 ∈ 𝑇 (𝑢), thus it takes 𝑂 (T × 𝑐2) time. As a result, the overall time

complexity of TemporalAggregation is 𝑂 (|E | × 𝑐 + T × 𝑐2).
Altogether, ClusteringNodeDescription and TemporalAg-

gregation take 𝑂 (|E | × 𝑐 + T × 𝑐2 + |𝑉 | × 𝑐3). Considering that

those functions are executed for at most 𝑑 iterations in the main

loop of the algorithm (Line 3), and that 𝑐 = 𝑂 (
√
ℎ), then the ul-

timate time complexity of Temporal SIR-GN can be expressed as

𝑂 (𝑑 × (|E| ×
√
ℎ +T ×ℎ + |𝑉 | ×ℎ

√
ℎ)). If 𝑑 and ℎ are fixed (i.e., they

are constant), this simplifies to 𝑂 (|E |), since T = 𝑂 (|E |).
Space complexity. Besides the input graph, the largest data struc-

tures that the algorithm needs to keep in memory at each iteration

𝑖 are matrices (i.e., 𝑅 and 𝑅𝑁) of dimensionality |𝑉 | × (𝑐2 +𝑐). Thus,
the overall space complexity is𝑂 (|E | + |𝑉 | × 𝑐2) = 𝑂 (|E | + |𝑉 | ×ℎ).

4.2 Theoretical properties

Temporal SIR-GN comes with theoretical guarantees if the input

temporal graph exhibits a temporal automorphism (Definition 3.2).

8

Specifically, as a first theoretical property, we show that the tem-

poral aggregation step of Temporal SIR-GN guarantees equal out-

put node representations if equal description vectors for any two

temporally-automorphic nodes are used. This result is stated in

the following Theorem 4.2, and makes use of the next auxiliary

lemma, which states that the neighbors of temporally-automorphic

nodes must be in turn temporally-automorphic:

Lemma 4.1. Let F be a temporal automorphism in a temporal

graph G(𝑉 ,𝑇 , E) such that, for 𝑢, 𝑣 ∈ 𝑉 , F (𝑢) = 𝑣 with a certain Δ𝑢 .
It holds that ∀𝑡 ∈𝑇 (𝑢),∀𝑥 ∈𝑛𝑏𝑟 (𝑢, 𝑡), ∃𝑦 ∈ 𝑛𝑏𝑟 (𝑣, 𝑡 +Δ𝑢) : F (𝑥) = 𝑦.

Proof. We prove the lemma by contradiction. Assume ∃𝑡 ′ ∈
𝑇 (𝑢), 𝑥 ′ ∈𝑛𝑏𝑟 (𝑢, 𝑡 ′) : F (𝑥 ′)=𝑧, 𝑧 ∉𝑛𝑏𝑟 (𝑣, 𝑡 ′ + Δ𝑢). Then, by defini-

tion of temporal automorphism, given edge (𝑢, 𝑥 ′, 𝑡 ′), there must

exist edge (F (𝑢), F (𝑥 ′), 𝑡 ′+Δ𝑢) = (𝑣, 𝑧, 𝑡 ′+Δ𝑢). This means that

𝑧 ∈𝑛𝑏𝑟 (𝑣, 𝑡 ′+Δ𝑢), which contradicts the assumption. □

Theorem 4.2. Let there be a temporal graph G = (𝑉 ,𝑇 , E), if the
TemporalAggregation function of Algorithm 1 (Line 21) receives

in input a matrix 𝐷 such that for any two temporally-automorphic

nodes 𝑢, 𝑣 ∈ 𝑉 it holds that 𝐷 [𝑢] = 𝐷 [𝑣] , then 𝐶𝑅 [𝑢] = 𝐶𝑅 [𝑣] .

Proof. If 𝐷 [𝑢] =𝐷 [𝑣] for temporally-automorphic nodes 𝑢 and

𝑣 (hypothesis), then, by Lemma 4.1, the neighbor aggregation at

Line 28 for each will result in identical vectors𝑁
𝑡𝑢
𝑢 = 𝑁

𝑡𝑢+Δ𝑢
𝑣 , for all

𝑡𝑢 ∈ 𝑇 (𝑢). A further straightforward consequence of Lemma 4.1 is

that ∀𝑡𝑢 ∈ 𝑇 (𝑢), ∃𝑡𝑣 ∈ 𝑇 (𝑣) : 𝑡𝑣 = 𝑡𝑢 + Δ𝑢 , and vice versa. This con-

sequence alongwith identical𝑁
𝑡𝑢
𝑢 ,𝑁

𝑡𝑢+Δ𝑢
𝑣 vectors leads to identical

summation over all the timestamps of each neighbor aggregation

(the cluster frequency vector, Line 29), i.e., 𝐶𝐹𝑢 =
∑
𝑡𝑢 ∈𝑇 (𝑢) 𝑁

𝑡𝑢
𝑢 =∑

𝑡𝑢 ∈𝑇 (𝑢) 𝑁
𝑡𝑢+Δ𝑢
𝑣 =

∑
𝑡𝑣 ∈𝑇 (𝑣) 𝑁

𝑡𝑣
𝑣 =𝐶𝐹𝑣 .

Then, cluster transition matrices are computed as in Defini-

tion 3.7. As (from above) all 𝑡𝑢 ∈ 𝑇 (𝑢) differ from 𝑡𝑣 ∈ 𝑇 (𝑣) by
Δ𝑢 , then 𝑒

−(𝑡′𝑢−𝑡𝑢)
𝛼 = 𝑒

−(𝑡′𝑢−𝑡𝑢+Δ𝑢−Δ𝑢)
𝛼 = 𝑒

−(𝑡′𝑣−𝑡𝑣)
𝛼 . Coupling this

with the above consequence of identical 𝑁
𝑡𝑢
𝑢 , 𝑁

𝑡𝑢+Δ𝑢
𝑣 leads to

𝐶𝑇𝑢 =
∑

𝑡𝑢 ,𝑡
′
𝑢∈𝑇 (𝑢), 𝑡′𝑢>𝑡𝑢

𝑒
−(𝑡′𝑢−𝑡𝑢)

𝛼 (𝑁 𝑡𝑢
𝑢)⊤𝑁 𝑡′𝑢

𝑢 =

=
∑

𝑡𝑢+Δ𝑢 ,𝑡′𝑢+Δ𝑢∈𝑇 (𝑢), 𝑡′𝑢>𝑡𝑢
𝑒
−(𝑡′𝑢−𝑡𝑢+Δ𝑢−Δ𝑢)

𝛼 (𝑁 𝑡𝑢+Δ𝑢
𝑢)⊤𝑁 𝑡′𝑢+Δ𝑢

𝑢 =

=
∑

𝑡𝑣 ,𝑡
′
𝑣∈𝑇 (𝑣), 𝑡′𝑣>𝑡𝑣 𝑒

−(𝑡′𝑣−𝑡𝑣)
𝛼 (𝑁 𝑡𝑣

𝑣)⊤𝑁 𝑡′𝑣
𝑣 =𝐶𝑇𝑣 . The theorem follows

as 𝐶𝑅 [𝑢] = (flatten(𝐶𝑇𝑢) 𝐶𝐹𝑢) = (flatten(𝐶𝑇𝑣) 𝐶𝐹𝑣) =𝐶𝑅 [𝑣] . □

A second property proved below regards the overall embeddings

yielded by Temporal SIR-GN, which are guaranteed to be equal for

temporally-automorphic nodes:

Theorem 4.3. Given a temporal graph G, for any two temporally-

automorphic (see Definition 3.2) nodes 𝑢,𝑢 ′ in G, the embeddings

𝑅 [𝑢] and 𝑅 [𝑢′] computed by Algorithm 1 are equal.

Proof. We apply a proof by induction. The base case consists in

showing that any two temporally-automorphic nodes𝑢 and𝑢 ′ have
identical initial representations 𝑅0

[𝑢] = 𝑅0

[𝑢′] . In this regard, note

that 𝐷0
vector is initialized with a constant (Line 1); then, clearly,

𝐷0

[𝑢] = 𝐷0

[𝑢′] . 𝑅
0
is the output of the temporal aggregation with

𝐷0
in input: then, 𝑅0

[𝑢] and 𝑅
0

[𝑢′] must be equal by Theorem 4.2.

Now, we assume that the theorem is true for iteration 𝑖 , and prove

it for iteration 𝑖 +1. This can be accomplished by noticing that equal

representations 𝑅𝑖[𝑢] and 𝑅
𝑖
[𝑢′] for temporally-automorphic nodes𝑢

and 𝑢 ′ lead to equal description vectors 𝐷𝑖
[𝑢] and 𝐷

𝑖
[𝑢′] (Line 5). In

fact, regardless of the specific cluster centers, the distance between

𝑅𝑖[𝑢] , 𝑅
𝑖
[𝑢′] and all those centers are the same, which means that

𝐷𝑖
[𝑢] and 𝐷

𝑖
[𝑢′] are the same too. Also, by Theorem 4.2, equal 𝐷𝑖

[𝑢]
and 𝐷𝑖

[𝑢′] lead to equal 𝑅𝑖+1

[𝑢] and 𝑅
𝑖+1

[𝑢′] (Line 6).
The theorem now follows by simply observing that the final em-

beddings 𝑅 [𝑢] and 𝑅 [𝑢′] are the ones produced in the last iteration,

which must be equal like the other iterations. □

Theorem 4.3 has two important consequences. The first is that

for nodes with identical temporal structures, Temporal SIR-GN
generates identical representations. This is vital to effectively cap-

ture temporal structural roles. Note that Theorem 4.3 provides a

sufficient condition. Deriving a necessary condition too is hard, as

it would correspond to having found a polynomial-time algorithm

for the problem of Graph Isomorphism, which is still a crucial

open question in theoretical computer science [23].

The second consequence of Theorem 4.3 is that Temporal SIR-
GN guarantees time invariance: nodes with identical neighborhood

structures and identical intervals between timestamps will have

identical representations, regardless of whether the absolute times-

tamps are similar. Time invariance allows a temporal NRL model

to capture similarity between events that are close in structure, but

occur at different times. For instance, an epidemic outbreak may

spread in a similar fashion over a similar time-frame (temporal struc-

tural property), but years apart in time. Without time-invariance,

similarities between the two outbreaks would be lost.

4.3 Empirical properties

Although Temporal SIR-GN exhibits theoretical properties for the

limit case of temporally-automorphic nodes, deriving formal guar-

antees for the general case is not easy. This goes beyond the scope of

this work, and we defer it to the future. Instead, here we provide em-

pirical intuitions of why our algorithm is generally well-designed

for the target Temporal Structural NRL problem.

First of all, we remark that a connection between the desidera-

tum of complying with temporal structural patterns that resemble

a notion of graph isomorphism is the fact that Temporal SIR-GN
emulates theWL isomorphism test. In fact, inspired byWL, the tem-

poral aggregation in Temporal SIR-GN yields an embedding vector

where part of the components correspond to the (expected) number

a certain temporal structural pattern is exhibited in the neighbors of

a node. These are complemented with novel components represent-

ing the (expected) number of temporal transitions among patterns.

Intuitively, the closer two nodes are to be temporally automorphic,

the more they share such structural patterns, then the more similar

the components of their corresponding embedding vectors.

More in concrete, consider the following experiment. Given a

temporal graph G = (𝑉 ,𝑇 , E) and 𝜖 ∈ (0, 1], let G𝜖
be the graph

resulting from the addition of a number 𝜖 |E | of random temporal

edges (𝑢, 𝑣, 𝑡) ∉ E, 𝑢, 𝑣 ∈ 𝑉 , 𝑡 ∈ 𝑇 to G. We generate G𝜖𝑖
, for

𝑖 =0, . . . , 5, with 𝜖0=0, 𝜖1=0.1, . . . , 𝜖5=0.5. Every G𝜖𝑖
is built adding

random edges on top of G𝜖𝑖−1
. We compute Temporal SIR-GN’s

embeddings of G and all G𝜖𝑖
and measure the average distance

¯𝑑𝜖𝑖
between the embedding of every node in G and the “replica” of that

9

node in G𝜖𝑖
, for all 𝜖𝑖 . The rationale is as follows. Between G and

G𝜖0
there is a temporal isomorphism, as they are identical graphs.

Then,
¯𝑑𝜖0

= 0 is expected. From 𝜖1 on, the temporal isomorphism

progressively disappears, due to the increasing addition of random

edges. Thus, the desideratum here is to observe
¯𝑑𝜖𝑖 <

¯𝑑𝜖𝑖+1, for all

𝑖 = 0, . . . , 4. As shown in the following table (for the real dataset

DPPIN, cf. . Section 5), this is actually the case:

¯𝑑𝜖
0
, 𝜖0 =0

¯𝑑𝜖
1
, 𝜖1 =0.1 ¯𝑑𝜖

2
, 𝜖2 =0.2 ¯𝑑𝜖

3
, 𝜖3 =0.3 ¯𝑑𝜖

4
, 𝜖4 =0.4 ¯𝑑𝜖

5
, 𝜖5 =0.5

0 1.959 3.117 6.799 8.623 10.480

Finally, as a specific example where Temporal SIR-GN meets

the desideratum that embedding similarity reflects to which extent

the corresponding nodes are temporally automorphic, consider the

graph in Figure 2. The (12-dimensional) embeddings produced by

Temporal SIR-GN for the lettered nodes of that graph are:

𝑅 [A] 0.2 0 0.163 0 0 0 0.275 0 0.233 1.449 0 1.551

𝑅 [B] 0.065 0 0.074 0 0 0 0.108 0 0.121 0.848 0 1.151

𝑅 [C] 0 0 0 0 0 0 0 0 0 0.378 0 0.622

The distances between the embedding of node A and the embed-

dings of the other nodes are |𝑅 [A] − 𝑅 [B] | = 1.5 < |𝑅 [A] − 𝑅 [C] | =
2.87. These distances comply with the size of the corresponding

maximal temporally isomorphic subgraphs (Figure 2–(I)-(II)).

Further empirical properties are shown in [37].

5 EXPERIMENTS

In this section, we empirically evaluate efficiency and effectiveness

of the proposed Temporal SIR-GN (for short, T-SIRGN), and com-

pare it to the state of the art. Efficiency is evaluated in terms of the

runtime needed to generate the embeddings. Effectiveness is evalu-

ated by using the generated embeddings in a couple of downstream

machine-learning tasks, namely node classification and regression.

Datasets. We experiment with synthetic and real datasets, whose

characteristics are shown in Table 2 and described below.

Synthetic benchmark datasets. Four synthetic benchmark datasets

were generated (Synth0.0–Synth0.3). We started from the 8 static

graph structural patterns in Figure 4 (popular in the structural NRL

literature [30]), and we used them as a basis for creating temporal

patterns that ultimately compose the synthetic datasets. Specifically,

we first sort the set 𝐸 of edges in a static pattern at random, so as

to yield a sequence 𝑒1, . . . , 𝑒 |𝐸 | . Then, every 𝑒𝑖 = (𝑢𝑖 , 𝑣𝑖) is assigned
a timestamp 𝑡𝑖 that is sampled from the set 𝑇 = {1, . . . , 100}. The
result is a temporal edge (𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖). Timestamp sampling is with

replacement, so that the same timestamp can be assigned multiple

edges. An example of this process is illustrated in Figure 5. For

every static pattern, we considered 3 different random orderings of

its edges, and associated every ordering to a sequence of timestamps.

As a result, every static pattern yields 3 different temporal patterns,

for a total of 24 temporal patterns. Nodes’ class labels are defined

by letting a temporal pattern be representative of the (temporal)

structural role of that pattern’s nodes. Hence, each pattern was

assigned a different label, which was in turn used as a label for all

the nodes of that pattern. A node may posibly be part of multiple

patterns. However, we ensured a single label per node by setting

an ordering (at random) among patterns, and associating a node to

the label of the first pattern in the ordering that node appears in.

We repeated this process 104 times, setting different identities

for all the nodes of the generated temporal edges. This led to the

Synth0.0 dataset. We created subsequent datasets from it, each with

Table 2: Dataset characteristics. |𝑉 |: #nodes; |𝑇 |: #timestamps; |E |:
#temporal edges; |𝐸 |: #non-temporal edges (i.e., #node pairs sharing at

least one temporal edge); T: ∑𝑢∈𝑉 |𝑇 (𝑢) |, where𝑇 (𝑢) is the set of times-

tamps in which node 𝑢 exists; #distinct node labels (i.e., classes).

Dataset |𝑉 | |𝑇 | |E | |𝐸 | T #Labels

Synth0.0 20 280 28 27 768 27 768 54 912 24

Synth0.1 20 280 100 29 796 29 796 58 852 24

Synth0.2 20 280 100 31 824 31 824 62 792 24

Synth0.3 20 280 100 33 852 33 852 66 708 24

BrazilAir 39 300 31 354 420 354 415 446 836 12

EUAir 119 700 61 1 978 350 1 978 319 2 529 289 12

USAir 348 110 101 4 487 670 4 433 165 6 246 184 12

Hospital [1, 74] 75 9 453 32 424 1 139 50 645 4

HS [1, 17] 180 11 273 45 047 2 239 79 578 5

Bitcoin [34, 35] 5 881 35 592 35 592 35 592 71 184 2

DPPIN [19] 905 36 4 826 1 758 4 462 2

GDELT [98] 16 682 170 522 191M 191M 65M 80

Facebook [77] 4 117 10 8 029 5 143 10 226 –

AS [38] 6 828 100 1 947 704 17 364 475 765 –

UCIMsg [49] 1 899 7 22 663 13 838 4 558 –

Figure 4: Static graph patterns used as a basis for the temporal graph

patterns underlying the synthetic datasets.

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 [𝑡1, 𝑡5]
Figure 5: Example of temporal graph pattern underlying the synthetic

datasets, derived from “building” the left-most static pattern in Figure 4

edge-by-edge over a sequence of timestamps. Aggregating the temporal

edges from the [𝑡1, 𝑡5] interval leads to the static pattern at hand.

additional noise in the form of randomly generated temporal edges

between already existing nodes. Specifically, Synth0.1 corresponds
to 0.1 × |E0.0 | random temporal edges added, where E0.0 are the

temporal edges in Synth0.0, and so on. Note that the addition of

noise makes it possible that in Synth0.1–Synth0.3 datasets the same

pair of nodes is connected by an edge in multiple timestamps.

Temporally-adapted real datasets. We took three popular static real

datasets from the air traffic domain (that are available, among oth-

ers, from [54]), and converted them to temporal versions, namely

BrazilAir, EUAir, and USAir. In these datasets, nodes, edges, and

labels represent airports, air traffic, and airport designations as

high to low traffic, respectively. Similar to our synthetic datasets,

each original static graph was used as a base structure, but tem-

porally constructed according to a time sequence. We used 3 time

sequences, and the node classes correspond to the original 4 classes,

along with the corresponding sequence, for a total of 12 ultimate

classes. This was repeated for each temporal structure 100 times.

Real labeled temporal datasets. These are real temporal graphs with

class labels on nodes. Hospital [1, 74] contains (RFIDs) contacts in
a hospital ward in Lyon, France during Dec 6th-10th, 2010, in 20-

second intervals. Node labels identify a node as a patient, medical

doctor, nurse, administrative. HighSchool (HS) [1, 17] contains con-
tacts in 5 classes in a high school in Marseilles, France during 7 days

10

in Nov 2012, in 20-second intervals, with node labels correspond-

ing to the class of a student. Bitcoin [34, 35] is a who-trusts-who

network of traders on the Bitcoin OTC platform (we ignore edge

weights). Timestamps represent the time of rating. Node labels

correspond to trustworthy/untrustworthy users. DPPIN [19] con-

sists of the protein-protein interactions of yeast cells through 12

stages of 3 metabolic cycles, for a total of 36 timestamps. Node la-

bels identify proteins as uncharacterized/verified. GDELT [98] is a

graph derived from the GDELT 2.0 Event DB, comprised of a record

information taken every 15 mins from news sources over 2016 to

2020. Nodes are actors, edges are events. Node labels correspond to

the country where the actor was present during that event.

Real unlabeled temporal datasets. Facebook [77] is a 3-month subset

of Facebook user interaction from a New Orleans community. The

original Facebook dataset had 9 984 snapshots, most with a single

edge only. In our experiments, we used a more meaningful version

of the dataset where we aggregate consecutive snapshots into 10

uniformly-sized bins. AutonomousSystems (AS) [38] is a communi-

cation network from Border Gateway Protocol logs. UCIMsg [49]
is a directed graph (we ingore edge directionality) of messages be-

tween users of an online community at University of California

Irvine. As with Facebook, the original UCIMsg had 59 811 snap-

shots, most with one edge only.We again here aggregated snapshots

into 7 uniformly-sized bins (as suggested in [41]).

We also experiment with a toy dataset (cf. [37]), specifically

created to empirically verify certain properties of interest.

Competitors.We involve the following state-of-the-art methods.

Liu et al.’s CTGCN [41], the most direct competitor, in three

variants: U-CTGCN-S (unsupervised, structural loss), U-CTGCN-C
(unsupervised, connectivity-preserving loss), S-CTGCN-C (super-

vised, connectivity-preserving loss).

DynGem [22], GCRN [62], TGAT [88], TGN [55] as representa-

tives of temporal-GNN-based NRL. As for GCRN, we assess both
the supervised (S-GCRN) and unsupervised (U-GCRN) versions.
DynGem, TGAT, TGN are solely unsupervised.

TIMERS [95], as a representative of proximity-based temporal

NRL approaches. This method is also strictly unsupervised.

DGI [76], NWR [69], SIR-GN [30] are tested as representatives

of (different classes of) static NRL approach: DGI is a GNN-based
method; NWR is a “hybrid” method, which combines structural and

proximity-based NRL; SIR-GN (the precursor of our T-SIRGN) is a
purely structural method. These methods are run on the flattened

input temporal graph (i.e., a static graph where an edge is drawn

between any two nodes if they share at least one temporal edge).

Within this category of competitor, we also include a version of

our T-SIRGN, termed StructuralShifted-T-SIRGN (for short, SS-
TSIRGN), where we let 𝛼 approach 0. This leads to embeddings that

reflect the temporally-flattened structural aspect only (i.e., due to

cluster frequency vector 𝐶𝐹 , cf. Section 3.4). As such, SS-TSIRGN
corresponds to a static structural NRL method that is run on a

weighted flattened version of the input temporal graph (where edge

weights are the number of timestamps in which that edge appears).

For CTGCN, TGAT, TGN,DGI,NWR, SIR-GN, we use the official

public implementations [30, 41, 55, 69, 76, 88]. For the remaining

competitors, we use the implementations in the CTGCN repository.

Parameters. Unless otherwise specified, all the competitors are

tested using their default/suggested parameters. In T-SIRGN (and

SS-TSIRGN), a large 𝑑 is used, so as to let it run until the stopping

criterion is met (cf. Section 3.2), while 𝛼 appropriate to every

dataset and experiment was chosen (details reported case by case).

The size ℎ of the output embeddings is set to 128 for all the methods.

For our T-SIRGN (and SS-TSIRGN), this corresponds to 𝑐 = 10.

Assessment. For node classification (Section 5.1), we train a clas-

sifier using the embeddings as feature vectors and the node labels

as a target variable to be predicted. We tried Extra Trees, XGBoost,

MLP classifiers. Unless otherwise specified, the results refer to Extra

Trees. We measure accuracy (Acc) and 𝐹1 (both ∈ [0%, 100%], higher
values meaning better performance) by 5-fold cross-validation.

For regression, (Section 5.2), PageRank (PR), degree centrality

(DC), hubs and authorities (HITS), betweenness centrality (BC), and

eigenvector centrality (EC) metrics are computed for every node and

snapshot, then summed over all timestamps, to have temporally-

aggregated scores for every node. We train a regressor (Random

Forest) using the embeddings as feature vectors, and each aggre-

gated score as a target variable to be predicted (one regressor per

metric). The performance is measured in terms of coefficient of de-

termination (𝑟2 ∈ (−∞, 1], higher values corresponding to better

performance) andmean squared error (MSE ∈ [0, +∞), lower values
corresponding to better performance), by 5-fold cross-validation.

Testing environment. For timed experiments, all methods were

run on a single machine equipped with an Intel 9900k 5GHz CPU,

64GB RAM, and an Nvidia RTX 3090 GPU with 24GB of memory.

5.1 Node classification

Table 3 shows the node classification results. On all the synthetic

datasets (Synth0.0–Synth0.3; results here refer to XGBoost classi-
fier), our T-SIRGN outperforms all other methods. The performance

gain is drastic over all the competitors but TGAT, whose perfor-
mance is closer, but still far lower. T-SIRGN reaches perfect𝐴𝑐𝑐 and

𝐹1 on the noise-free Synth0.0. From Synth0.1 on, noise in terms of

random temporal edges is added. Thus, T-SIRGN expectedly shows

an incremental performance decrease as the noise increases.

T-SIRGN is the best performer on the temporally-adapted datasets

too. Note that these datasets are much larger than the synthetic

ones. As such, DynGem and TGAT were not able to run in reason-

able time (i.e., within 48 hours) on two of them, while TGN was

unable to run on all such datasets due to memory constraints.

T-SIRGN consistently outperforms all static NRL methods too

(i.e., DGI, NWR, SIR-GN, SS-TSIRGN). This demonstrates that our

datasets are effective in testing for a method’s ability to capture not

only structural, but temporal structural information.

The general superiority of T-SIRGN is confirmed on the real

datasets. T-SIRGN is the best performer on Bitcoin and DPPIN. In
this regard, note thatDPPIN is a highly unbalanced dataset, with the

majority-class label spanning the 98% of all the labels. For DPPIN,
thus, the Acc measure is not really meaningful. What matters is the

F1, in terms of which T-SIRGN outperforms all its competitors by

at least 9 percentage points. On Hospital and HS, the supremacy of

T-SIRGN is slightly less evident, thus remaining relevant: T-SIRGN
is the second best performer on Hospital, and the best on par on

HS. The reason of this is likely because the node labels in Hospital
11

Table 3: Node classification of our T-SIRGN vs. its competitors. Accu-
racy (Acc ∈ [0%, 100%]) and 𝐹1 ∈ [0%, 100%] assessment criteria (higher

values mean better performance). Best results in bold, second best in

italic.

(a) Synthetic and temporally-adapted datasets

Method
Synth0.0 Synth0.1 Synth0.2 Synth0.3 BrazilAir EUAir USAir
Acc 𝐹1 Acc 𝐹1 Acc 𝐹1 Acc 𝐹1 Acc 𝐹1 Acc 𝐹1 Acc 𝐹1

DynGem 8 2 8 2 8 2 7 2 16 11 – – – –

TIMERS 8 2 8 2 7 1 8 3 10 2 9 2 9 2

U-GCRN 6 4 6 4 6 4 6 4 12 12 11 10 11 10

S-GCRN 6 3 7 5 8 6 9 8 8 6 9 9 11 11

U-CTGCN-S 8 2 8 2 8 2 8 2 16 9 14 7 12 6

U-CTGCN-C 17 15 8 6 7 6 7 6 33 33 8 8 12 12

S-CTGCN-C 17 16 7 6 9 8 10 9 44 45 21 22 11 11

TGAT 93 93 80 80 65 65 58 57 51 51 – – – –

TGN 9 5 9 5 8 5 7 5 – – – – – –

DGI 28 24 25 22 20 18 16 15 23 23 16 16 17 16

NWR 33 30 31 30 25 25 25 25 26 26 25 25 10 10

SIR-GN 30 26 44 42 35 35 26 26 32 32 29 29 29 29

SS-TSIRGN 30 27 42 40 33 33 26 26 31 31 28 28 25 25

T-SIRGN 100 100 86 86 72 72 61 60 80 81 74 74 45 45

(b) Real labeled datasets

Method
Hospital HS Bitcoin DPPIN
Acc 𝐹1 Acc 𝐹1 Acc 𝐹1 Acc 𝐹1

DynGem 39 14 23 7 57 36 98 50

TIMERS 41 17 24 10 66 65 98 50

U-GCRN 35 19 22 22 56 49 98 50

S-GCRN 41 29 25 23 61 56 98 49

U-CTGCN-S 41 17 24 10 57 36 98 50

U-CTGCN-C 35 20 14 13 57 49 98 50

S-CTGCN-C 36 20 23 21 64 58 98 49

TGAT 75 58 38 38 81 81 97 49

TGN 45 33 42 41 66 65 98 49

DGI 35 23 28 26 70 69 98 49

NWR 35 23 29 27 65 64 97 49

SIR-GN 55 37 44 42 80 80 97 49

SS-TSIRGN 35 30 48 46 80 80 97 49

T-SIRGN 52 42 48 46 85 85 98 59

and HS do not comply with a structural semantics solely, but they

have some proximity-based flavor as well.

GDELT dataset. As for GDELT, we provide here a separate dis-
cussion, as the experiment was slightly different due to the time-

varying nature of the node labels, and also because we could only

be compared to literature values, as none of the (non-static) se-

lected competitors could be run for such a large dataset, due to

time/memory constraints. The experiment was as follows. The

graph from 2018–19 (spanning 14k nodes, 91M temporal edges, 69k

timestamps) was used as a training set to compute a T-SIRGN’s
model (cf. Section 3.5, “Inductive setting”). Then, for each month

of 2020, we (𝑖) computed embeddings based on trained T-SIRGN’s
model, (𝑖𝑖) trained a classifier (Extra Trees) with those embeddings,

and (𝑖𝑖𝑖) measured F1 by a temporal 80/20 train/test split. The av-

erage F1 over all months is 12.95%. This value is higher than the

state-of-the-art one (11.9%) reported by Zhou et al. [98] for a sim-

ilar experiment. We remark that this is a classification task with

80 classes, thus even an improvement of one percentage point is

relevant. Zhou et al. [98] provide a framework on which to run

temporal GNNs in faster time. They involve both TGAT and TGN,
and TGN demonstrated the highest performance on GDELT, at F1
= 11.9% (while other methods clustered around F1 = 10-11%).

Importantly, our Temporal SIR-GN took about 30 minutes on the

training set. As said above, none of the (implementations we used

Table 4: Regression of our T-SIRGN vs. its competitors. PageRank (PR),
degree centrality (DC), hubs and authorities (HITS), betweenness central-
ity (BC), and eigenvector centrality (EC) metrics. Coefficient of determi-
nation (𝑟 2 ∈ (−∞, 1], higher values mean better performance), and mean
squared error (MSE ∈ [0, +∞) , lower values mean better performance) as-

sessment criteria. Best results in bold, second best in italic.

Method

PR DC HITS BC EC

𝑟2
MSE 𝑟2

MSE 𝑟2
MSE 𝑟2

MSE 𝑟2
MSE

Fa
ce
bo

ok

DynGem -9.583 0.150 -6.195 0.109 -1.782 0.028 -1.316 0.0575 -1.407 0.0571

TIMERS -5.70 0.146 -3.551 0.107 -1.172 0.0263 -0.847 0.0555 -0.924 0.0555

U-GCRN -5.070 0.147 -3.243 0.109 -2.080 0.0288 -1.867 0.0601 -1.862 0.0596

U-CTGCN-S -9.04 0.145 -5.610 0.107 -0.574 0.0257 -0.667 0.0536 -0.607 0.0522

U-CTGCN-C -3.217 0.140 -2.126 0.102 -0.451 0.0268 -0.137 0.0489 -0.147 0.0496

TGAT 0.82 2.49e-3 0.728 2.44e-3 -0.229 4.85e-4 0.113 4.47e-3 -0.031 2.49e-3

TGN -0.104 3.05e-2 -0.0807 2.04e-2 -0.873 1.56e-3 -0.289 6.24e-3 -0.141 7.47e-3

SS-TSIRGN 0.912 1.26e-3 0.971 2.64e-4 0.0379 7.93e-3 0.306 3.46e-3 0.229 2.64e-3

T-SIRGN 0.922 1.09e-3 0.967 3.29e-4 0.112 7.02e-3 0.419 2.96e-3 0.358 2.28e-3

U
C
IM

sg

DynGem 0.267 0.0505 0.0296 0.0791 0.0055 0.0513 -0.265 0.0479 0.0423 0.0667

TIMERS 0.307 0.0509 0.0831 0.0786 0.154 0.0498 0.175 0.0453 0.076 0.0789

U-GCRN 0.0853 0.0549 0.0193 0.0775 0.136 0.0496 -0.667 0.0538 0.204 0.0618

U-CTGCN-S 0.371 0.0488 0.0512 0.0793 0.146 0.0496 0.0447 0.0454 0.135 0.065

U-CTGCN-C 0.48 0.0442 0.411 0.0622 0.403 0.0421 -0.165 0.0479 0.556 0.047

TGAT 0.425 3.103e-3 0.424 3.92e-3 0.29 3.31e-3 0.049 2.99e-3 0.391 3.1e-3

TGN -0.185 5.16e-3 -0.161 7.6e-3 -0.214 4.19e-3 -0.29 4.05e-3 -0.117 6.39e-3

SS-TSIRGN 0.538 2.11e-3 0.878 8.0e-4 0.454 1.95e-3 0.369 2.17e-3 0.720 1.55e-3

T-SIRGN 0.559 2.43e-3 0.887 7.74e-4 0.468 2.0e-3 0.241 2.22e-3 0.723 1.6e-3

A
S

DynGem -0.618 0.006 -0.63 0.006 -0.66 0.006 -2.446 0.006 -0.207 0.01

TIMERS -0.777 0.007 -0.702 0.007 -0.708 0.007 -8.55 0.006 -0.057 0.009

U-GCRN -143.3 0.011 -231.6 0.011 -179 0.011 -19622 0.01 -3.756 0.0153

U-CTGCN-S -0.07 5.45e-3 -0.0839 0.0054 -0.081 0.0054 -0.1872 0.005 -1.624 0.0136

U-CTGCN-C -0.786 0.007 -0.784 0.006 -0.824 0.007 -12.27 0.006 -0.748 0.012

TGAT -0.216 9.33e-4 -0.0491 8.05e-4 0.0752 8.83e-4 – – 0.0937 9.44e-4

TGN – – – – – – – – – –

SS-TSIRGN 0.925 6.45e-5 0.963 4.94e-5 0.952 4.78e-5 0.807 6.9e-5 0.926 5.06e-5

T-SIRGN 0.933 6.24e-5 0.956 4.49e-5 0.952 4.82e-5 0.769 6.43e-5 0.9 6.19e-5

for the) selected competitors could run on GDELT with the hard-

ware at our disposal. Zhou et al. report training times on GDELT
(for 2016–18) of 8 500 (TGAT) and 900 (TGN) seconds for a single
epoch, which are quite a lot, and they are anyway achieved for im-

plementations of those methods within their efficient framework.

5.2 Regression

Table 4 shows the comparison between our T-SIRGN and its com-

petitors in the regression task. Note that static NRL methods are

not included here, as they must run on a static version of the graph,

which differ from the temporal graphs such that comparison is not

sensible. In general, T-SIRGN achieves 𝑟2
close to one and/or𝑀𝑆𝐸

close to zero, thus resulting the best performer in most cases. In the

few cases where T-SIRGN is the second highest performer, the struc-

turally shifted version of our method (SS-TSIRGN) is the highest (or
TGAT, in just one case). This complies with the design principles of

this experiment: SS-TSIRGN emulates temporal aggregation in its

execution, thus its good performance is not surprising here, where

the prediction of scores aggregated over time is required.

As far as the other competitors, most of them appear completely

unable to capture these metrics, with 𝑅2
values negative or close

to zero. Only CTGCN and TGAT show any capability at this task,

while still remaining consistently outperformed by our T-SIRGN.

5.3 Efficiency

Running times. In Figure 6, we show the runtimes of our T-
SIRGN and all its competitors (but SS-TSIRGN, as it is a variant of
T-SIRGN, thus it runs comparably to it, and the static NRL methods,

for which the comparison here is not meaningful, as these run on

static yet much smaller versions of the temporal graph with flat-

tened timestamps). We report results on the Synth0.1, BrazilAir,
12

2000 4000 6000
Runtime (sec)

T-SIRGNS-CTCGCN-CU-CTCGCN-CU-CTCGCN-SS-GCRNU-GCRNTIMERSDynGemTGATTGN

28.1851.4 7408.8988.4853.2 6862.31724.3815.5266156

20000 40000
Runtime (sec)

T-SIRGN
S-CTCGCN-C
U-CTCGCN-C
U-CTCGCN-S

S-GCRN
U-GCRN
TIMERS

DynGem
TGAT

41.8
652.3

8470.3
919.3
602.7

7514.1
7492.8
7532.8

36690

30000 60000 90000
Runtime (sec)

T-SIRGN
S-CTCGCN-C
U-CTCGCN-C
U-CTCGCN-S

S-GCRN
U-GCRN
TIMERS

171.8
2702.6

71211.1
7111.9

3070.3
67974.1

11129.5

50000 150000
Runtime (sec)

T-SIRGN
S-CTCGCN-C
U-CTCGCN-S

S-GCRN
TIMERS

420.1
87231.6

187352
11526

38941.1

(a) Synth0.1 (b) BrazilAir (c) EUAir (d) USAir

Figure 6: Runtime of the proposed T-SIRGN and its competitors on several datasets. Actual time in seconds displayed on each bar.

103 104

(a) |V|

102

103

104

Ti
m

e
(s

ec
on

ds
)

T-SIRGN
linear

2M 4M 6M 8M 10M10M 10 2x105 5

(a) |𝑉 | (b) |E | (c) T
Figure 7: Effect of number of nodes (|𝑉 |), temporal edges (|E |), and
T on the running time of the proposed T-SIRGN, on random temporal

graphs of varying size and number of snapshots.

EUAir, and USAir datasets, representing a full range of graph sizes,

total timestamps, and timestamps per node.

Runtimes were determined on a single machine (cf. beginning of

Section 5). The GNN-based methods (DynGem, GCRN, CTGCN)
run on a GPU, while the TIMERS implementation we use in our

experiments is a CPU multi-threaded one. For the S-CTGCN-C
method, memory constraints required usage of the CPU rather

than the GPU on USAir. TGN and TGAT were both run on a GPU,

and memory constraints prevented the completion of TGN for any

airline dataset. DynGem, U-GCRN, and U-CTGCN-C could not

terminate within 52 hours on USAir, thus we do not report their

results. For TGAT, the same happened on both EUAir and USAir.
Our T-SIRGN was tested here using a single-threaded CPU imple-

mentation. Thus, it is under adverse conditions with respect to the

competitors. Despite that, it shows exceedingly shorter runtimes,

sometimes greater than two orders of magnitude faster than others.

Scalability.We also determined the effects of graph size (nodes |𝑉 |,
temporal edges |E |) and timestamps per node (T) on the runtime

of T-SIRGN on a set of random temporal graphs. For these tests,

we use 𝛼 =10, 𝑑 =5. |𝑉 | was varied in a graph with |E |=100𝑘 , and

T =200𝑘 fixed, while |E |was varied in a graphwith |𝑉 |=1𝑘 andT =

100𝑘 . As shown in Figure 7(a)–(b), T-SIRGN’s runtime increases

sub-linearly in the number of nodes. Also, the combined effect of

temporal edges is roughly linear, which is consistent with our time

complexity analysis. Remarkably, T-SIRGN handles 10M temporal

edges in less than 3 minutes: this confirms its high efficiency.

We also isolated the effect of T , using graphs with a fixed num-

ber of nodes and edges (|𝑉 | = 1𝑘 and |E | = 100𝑘). The number of

timestamps was varied such that T increased while the number of

temporal edges remained fixed. Figure 7(c), shows the contribution

of T to be linear, also consistent with our theoretical complexity.

5.4 Parameter analysis

We tested iterations (𝑑), embedding size (ℎ), and 𝛼 on the Synth0.1
dataset, and plotted against runtime and accuracy (Figure 8). We

focused on our T-SIRGN, and, for parameter ℎ, on its closest com-

petitors GCRN and CTGCN (in all variants). We did not involve

any competitors for 𝛼 as it is a parameter of T-SIRGN only. Also,

5 10 15

10
20
30
40

Ti
me

 (s
ec

on
ds

) T-SIRGN
d k

k

k

6

4

2 linear

10 510 310 1 101 103 105

5
10
15

Ti
me

 (s
ec

on
ds

)

T-SIRGN

10 20 30

25
50
75

Ac
cu

rac
y (

%)

T-SIRGN

200 400 600

25
50
75

Ac
cu

rac
y (

%)

10 510 310 1 101 103 105

25
50
75

Ac
cu

rac
y (

%)

T-SIRGN

(a) Depth 𝑑 (b) Embedding size ℎ (c) Parameter 𝛼

Figure 8: Runtime and accuracy (𝐴𝑐𝑐) effects of parameter choice on

the Synth0.1 dataset.

manipulating 𝑑 in the GNN-based competitors is not trivial, as it

corresponds to the number of GNN layers (it is often hardcoded).

Figure 8-(a) shows the runtime for T-SIRGN increases linearly

with 𝑑 (consistent with its theoretical time complexity), while max-

imal accuracy requires a small 𝑑 . The stagnating performance after

some iterations complies with T-SIRGN’s design, which guarantees

no significant drop in unique embeddings once these get stable.

The trend of T-SIRGN’s runtime is roughly proportional to the

square root of ℎ (Figure 8-(b)). Accuracy is fairly stable, with the

only exception of an expected (slight) decrease when ℎ is very low

(i.e., 2–10). The competitors run roughly linearly in ℎ, and similar

considerations to T-SIRGN hold for their accuracy.

Varying 𝛼 (Figure 8-(c)) impacts accuracy, but not runtimes. A

very small 𝛼 leads to consistently lower accuracy, which complies

with the fact that 𝛼 close to zero leads to a version of T-SIRGN
(SS-TSIRGN) that considers temporally-flattened information only.

6 CONCLUSION

This paper presents Temporal SIR-GN, a novel method for struc-

tural representation learning in temporal graphs, which overcomes

efficiency and effectiveness limitations of existing methods. Tempo-
ral SIR-GN performance are attested both theoretically and experi-

mentally, by an extensive evaluation on synthetic and real data.

Future work includes deriving further theoretical properties,

experimenting with the settings in Section 3.5 and with more

tasks/applications, and investigating how to handle our target tem-

poral structural patterns with temporal-GNN-based approaches.

ACKNOWLEDGMENTS

This research was funded by a National Centers of Academic Ex-

cellence in Cybersecurity grant (H98230-22-1-0300), which is part

of the National Security Agency.

13

REFERENCES

[1] Alan A. Barrat, Ciro Cattuto, Jean-François Pinton, and Wouter Van den Broeck.

2008. SocioPatterns. http://www.sociopatterns.org/.

[2] Charu C. Aggarwal and Haixun Wang (Eds.). 2010. Managing and Mining Graph

Data. Advances in Database Systems, Vol. 40. Springer.

[3] Nesreen K. Ahmed, Ryan A. Rossi, John Boaz Lee, Theodore L. Willke, Rong

Zhou, Xiangnan Kong, andHoda Eldardiry. 2022. Role-Based Graph Embeddings.

IEEE Transactions on Knowledge and Data Engineering (TKDE) 34, 5 (2022), 2401–

2415.

[4] Vladimir Batagelj and Matjaz Zaversnik. 2011. Fast algorithms for determining

(generalized) core groups in social networks. Advances in Data Analysis and

Classification (ADAC) 5, 2 (2011), 129–145.

[5] Mikhail Belkin and Partha Niyogi. 2001. Laplacian Eigenmaps and Spectral

Techniques for Embedding and Clustering. In Proc. of Conf. on Advances in

Neural Information Processing Systems (NIPS). 585–591.

[6] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral

Networks and Locally Connected Networks on Graphs. In Proc. of Int. Conf. on

Learning Representations (ICLR).

[7] Jaewook Byun, Sungpil Woo, and Daeyoung Kim. 2020. ChronoGraph: Enabling

temporal graph traversals for efficient information diffusion analysis over time.

In Proc. of IEEE Int. Conf. on Data Engineering (ICDE). 2026–2027.

[8] Hongyun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang. 2018. A

Comprehensive Survey of Graph Embedding: Problems, Techniques, and Ap-

plications. IEEE Transactions on Knowledge and Data Engineering (TKDE) 30, 9

(2018), 1616–1637.

[9] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. GraRep: Learning Graph

Representations with Global Structural Information. In Proc. of Int. Conf. on

Information and Knowledge Management (CIKM). ACM, 891–900.

[10] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin

Murphy. 2020. Machine Learning on Graphs: A Model and Comprehensive

Taxonomy. CoRR abs/2005.03675 (2020).

[11] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring

and Relieving the Over-Smoothing Problem for Graph Neural Networks from

the Topological View. In Proc. of AAAI Conf. on Artificial Intelligence (AAAI).

3438–3445.

[12] Jinyin Chen, Xueke Wang, and Xuanheng Xu. 2022. GC-LSTM: graph convolu-

tion embedded LSTM for dynamic network link prediction. Applied Intelligence

(APIN) 52, 7 (2022), 7513–7528.

[13] Michele Coscia. 2021. The Atlas for the Aspiring Network Scientist. CoRR

abs/2101.00863 (2021).

[14] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. 2018. Learning

Structural Node Embeddings via Diffusion Wavelets. In Proc. of ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining (KDD), Yike Guo and Faisal

Farooq (Eds.). 1320–1329.

[15] Lun Du, YunWang, Guojie Song, Zhicong Lu, and JunshanWang. 2018. Dynamic

Network Embedding : An Extended Approach for Skip-gram based Network

Embedding. In Proc. of Int. Joint Conf. on Artificial Intelligence (IJCAI). 2086–

2092.

[16] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-

Rodriguez, and Le Song. 2016. Recurrent Marked Temporal Point Processes:

Embedding Event History to Vector. In Proc. of ACM SIGKDD Int. Conf. on

Knowledge Discovery and Data Mining (KDD). 1555–1564.

[17] Julie Fournet and Alain Barrat. 2014. Contact Patterns among High School

Students. PLOS ONE 9, 9 (2014), 1–17.

[18] Alan M. Frieze, Aristides Gionis, and Charalampos E. Tsourakakis. 2013. Al-

gorithmic techniques for modeling and mining large graphs (AMAzING). In

Proc. of ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD).

1523.

[19] Dongqi Fu and Jingrui He. 2021. DPPIN: A Biological Dataset of Dynamic

Protein-Protein Interaction Networks. CoRR abs/2107.02168 (2021).

[20] Swapnil Gandhi and Yogesh Simmhan. 2020. An Interval-centric Model for

Distributed Computing over Temporal Graphs. In Proc. of IEEE Int. Conf. on

Data Engineering (ICDE). 1129–1140.

[21] Rishab Goel, Seyed Mehran Kazemi, Marcus A. Brubaker, and Pascal Poupart.

2020. Diachronic Embedding for Temporal Knowledge Graph Completion. In

Proc. of AAAI Conf. on Artificial Intelligence (AAAI). 3988–3995.

[22] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. 2018. DynGEM: Deep

Embedding Method for Dynamic Graphs. CoRR abs/1805.11273 (2018).

[23] Martin Grohe and Daniel Neuen. 2021. Recent advances on the graph isomor-

phism problem. In Surveys in Combinatorics. 187–234.

[24] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning

for Networks. In Proc. of ACM SIGKDD Int. Conf. on Knowledge Discovery and

Data Mining (KDD). 855–864.

[25] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Repre-

sentation Learning on Large Graphs. In Proc. of Conf. on Advances in Neural

Information Processing Systems (NIPS). 1024–1034.

[26] Ningyuan Teresa Huang and Soledad Villar. 2021. A Short Tutorial on The

Weisfeiler-Lehman Test And Its Variants. In Proc. IEEE Int. Conf. on Acoustics,

Speech and Signal Processing (ICASSP). 8533–8537.

[27] Shixun Huang, Zhifeng Bao, Guoliang Li, Yanghao Zhou, and J. Shane Culpepper.

2020. Temporal Network Representation Learning via Historical Neighborhoods

Aggregation. In Proc. of IEEE Int. Conf. on Data Engineering (ICDE). 1117–1128.

[28] Junchen Jin, Mark Heimann, Di Jin, and Danai Koutra. 2022. Toward Under-

standing and Evaluating Structural Node Embeddings. ACM Transactions on

Knowledge Discovery from Data (TKDD) 16, 3 (2022), 58:1–58:32.

[29] Wei Jin, Yao Ma, Yiqi Wang, Xiaorui Liu, Jiliang Tang, Yukuo Cen, Jiezhong Qiu,

Jie Tang, Chuan Shi, Yanfang Ye, Jiawei Zhang, and Philip S. Yu. 2021. Graph

Representation Learning: Foundations, Methods, Applications and Systems. In

Proc. of ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD).

4044–4045.

[30] Mikel Joaristi and Edoardo Serra. 2021. SIR-GN: A Fast Structural Iterative Rep-

resentation Learning Approach For Graph Nodes. https://github.com/mjoaristi/

SIR-GN. ACM Transactions on Knowledge Discovery from Data (TKDD) 15, 6

(2021), 100:1–100:39.

[31] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi,

Peter Forsyth, and Pascal Poupart. 2020. Representation Learning for Dynamic

Graphs: A Survey. Journal of Machine Learning Research (JMLR) 21 (2020),

70:1–70:73.

[32] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In Proc. of Int. Conf. on Learning Representations

(ICLR).

[33] Danai Koutra and Christos Faloutsos. 2017. Individual and Collective Graph

Mining: Principles, Algorithms, and Applications. Morgan & Claypool Publishers.

[34] Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and

VS Subrahmanian. 2018. Rev2: Fraudulent user prediction in rating platforms.

In Proc. of Int. Conf. on Web Search and Data Mining (WSDM). 333–341.

[35] Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos.

2016. Edge weight prediction in weighted signed networks. In Proc. IEEE ICDM

Conf. 221–230.

[36] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting Dynamic

Embedding Trajectory in Temporal Interaction Networks. In Proc. of ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD). 1269–1278.

[37] Janet Layne, Justin Carpenter, Edoardo Serra, and Francesco Gullo. 2023. Tem-

poral SIR-GN: Efficient and Effective Structural Representation Learning for

Temporal Graphs – APPENDIX. https://github.com/janetlayne2/Temporal-SIR-

GN/blob/main/appendix/appendix.pdf.

[38] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[39] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolutional

Recurrent Neural Network: Data-Driven Traffic Forecasting. In Proc. of Int. Conf.

on Learning Representations (ICLR).

[40] Shangsong Liang, Shaowei Tang, Zaiqiao Meng, and Qiang Zhang. 2021. Cross-

Temporal Snapshot Alignment for Dynamic Networks. IEEE Transactions on

Knowledge and Data Engineering (TKDE) (2021).

[41] Jingxin Liu, Chang Xu, Chang Yin, Weiqiang Wu, and You Song. 2020. K-Core

based Temporal Graph Convolutional Network for Dynamic Graphs. https://

github.com/jhljx/CTGCN. IEEE Transactions on Knowledge and Data Engineering

(TKDE) (2020).

[42] Yuanfu Lu, Xiao Wang, Chuan Shi, Philip S. Yu, and Yanfang Ye. 2019. Temporal

Network Embedding with Micro- and Macro-dynamics. In Proc. of Int. Conf. on

Information and Knowledge Management (CIKM). 469–478.

[43] Jing Ma, Qiuchen Zhang, Jian Lou, Li Xiong, and Joyce C. Ho. 2021. Temporal

Network Embedding via Tensor Factorization. In Proc. of Int. Conf. on Information

and Knowledge Management (CIKM). 3313–3317.

[44] Yao Ma, Ziyi Guo, Zhaochun Ren, Jiliang Tang, and Dawei Yin. 2020. Stream-

ing Graph Neural Networks. In Proc. of Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval (SIGIR). 719–728.

[45] Sedigheh Mahdavi, Shima Khoshraftar, and Aijun An. 2018. dynnode2vec:

Scalable Dynamic Network Embedding. In Proc. of IEEE Int. Conf. on Big Data.

3762–3765.

[46] Franco Manessi, Alessandro Rozza, and Mario Manzo. 2020. Dynamic graph

convolutional networks. Pattern Recognition 97 (2020).

[47] Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee

Koh, and Sungchul Kim. 2018. Dynamic Network Embeddings: From Random

Walks to Temporal Random Walks. In Proc. of IEEE Int. Conf. on Big Data. 1085–

1092.

[48] Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee

Koh, and Sungchul Kim. 2018. Continuous-Time Dynamic Network Embeddings.

In Proc. of World Wide Web Conf. (WWW). 969–976.

[49] Tore Opsahl and Pietro Panzarasa. 2009. Clustering in weighted networks. Social

Networks 31, 2 (2009), 155–163.

[50] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,

Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. 2020.

EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. In

14

http://www.sociopatterns.org/
https://github.com/mjoaristi/SIR-GN
https://github.com/mjoaristi/SIR-GN
https://github.com/janetlayne2/Temporal-SIR-GN/blob/main/appendix/appendix.pdf
https://github.com/janetlayne2/Temporal-SIR-GN/blob/main/appendix/appendix.pdf
http://snap.stanford.edu/data
https://github.com/jhljx/CTGCN
https://github.com/jhljx/CTGCN

Proc. of AAAI Conf. on Artificial Intelligence (AAAI). 5363–5370.

[51] Yulong Pei, Xin Du, Jianpeng Zhang, George Fletcher, and Mykola Pechenizkiy.

2020. struc2gauss: Structural role preserving network embedding via Gaussian

embedding. Data Mining and Knowledge Discovery (DAMI) 34, 4 (2020), 1072–

1103.

[52] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learn-

ing of social representations. In Proc. of ACM SIGKDD Int. Conf. on Knowledge

Discovery and Data Mining (KDD). 701–710.

[53] Zhenyu Qiu, Wenbin Hu, Jia Wu, Weiwei Liu, Bo Du, and Xiaohua Jia. 2020.

Temporal Network Embedding with High-Order Nonlinear Information. In Proc.

of AAAI Conf. on Artificial Intelligence (AAAI). 5436–5443.

[54] Leonardo Filipe Rodrigues Ribeiro, Pedro H. P. Saverese, and Daniel R.

Figueiredo. 2017. struc2vec: Learning Node Representations from Structural

Identity. In Proc. of ACM SIGKDD Int. Conf. on Knowledge Discovery and Data

Mining (KDD). 385–394.

[55] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico

Monti, and Michael Bronstein. 2020. Temporal Graph Networks for Deep

Learning on Dynamic Graphs. https://github.com/twitter-research/tgn. In ICML

2020 Workshop on Graph Representation Learning.

[56] Ryan A. Rossi, Nesreen K. Ahmed, Eunyee Koh, Sungchul Kim, Anup Rao,

and Yasin Abbasi-Yadkori. 2020. A Structural Graph Representation Learning

Framework. In Proc. of Int. Conf. on Web Search and Data Mining (WSDM).

483–491.

[57] Ryan A. Rossi, Di Jin, Sungchul Kim, Nesreen K. Ahmed, Danai Koutra, and

John Boaz Lee. 2020. On Proximity and Structural Role-based Embeddings in

Networks: Misconceptions, Techniques, and Applications. ACM Transactions on

Knowledge Discovery from Data (TKDD) 14, 5 (2020), 63:1–63:37.

[58] Ryan A. Rossi, Rong Zhou, and Nesreen K. Ahmed. 2020. Deep Inductive Graph

Representation Learning. IEEE Transactions on Knowledge and Data Engineering

(TKDE) 32, 3 (2020), 438–452.

[59] Sam T. Roweis and Lawrence K. Saul. 2000. Nonlinear Dimensionality Reduction

by Locally Linear Embedding. Science 290, 5500 (2000), 2323–2326.

[60] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2020.

DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-

AttentionNetworks. In Proc. of Int. Conf. onWeb Search and DataMining (WSDM).

519–527.

[61] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and

Gabriele Monfardini. 2009. The Graph Neural NetworkModel. IEEE Transactions

on Neural Networks and Learning Systems (TNNLS) 20, 1 (2009), 61–80.

[62] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson.

2018. Structured Sequence Modeling with Graph Convolutional Recurrent

Networks. In Proc. of Int. Conf. on Neural Information Processing (ICONIP). 362–

373.

[63] Blake Shaw and Tony Jebara. 2009. Structure preserving embedding. In Proc. of

Int. Conf. on Machine Learning (ICML). 937–944.

[64] Min Shi, Yu Huang, Xingquan Zhu, Yufei Tang, Yuan Zhuang, and Jianxun Liu.

2021. GAEN: Graph Attention Evolving Networks. In Proc. of Int. Joint Conf. on

Artificial Intelligence (IJCAI). 1541–1547.

[65] Uriel Singer, Ido Guy, and Kira Radinsky. 2019. Node Embedding over Temporal

Graphs. In Proc. of Int. Joint Conf. on Artificial Intelligence (IJCAI). 4605–4612.

[66] Michele Starnini, Charalampos E. Tsourakakis, Maryam Zamanipour, André

Panisson, Walter Allasia, Marco Fornasiero, Laura Li Puma, Valeria Ricci, Silvia

Ronchiadin, Angela Ugrinoska,Marco Varetto, andDarioMoncalvo. 2021. Smurf-

Based Anti-money Laundering in Time-Evolving Transaction Networks. In Proc.

of Europ. Machine Learning and Principles and Practice of Knowledge Discovery

in Databases (ECML PKDD). 171–186.

[67] Yahui Sun, Shuai Ma, and Bin Cui. 2022. Hunting Temporal Bumps in Graphs

with Dynamic Vertex Properties. In Proc. of ACM Int. Conf. on Management of

Data (SIGMOD). 874–888.

[68] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. LINE: Large-scale Information Network Embedding. In Proc. of World

Wide Web Conf. (WWW). 1067–1077.

[69] Mingyue Tang, Pan Li, and Carl Yang. 2022. Graph Auto-Encoder via Neighbor-

hood Wasserstein Reconstruction. https://github.com/mtang724/NWR-GAE. In

Proc. of Int. Conf. on Learning Representations (ICLR).

[70] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. 2000. A Global

Geometric Framework for Nonlinear Dimensionality Reduction. Science 290,

5500 (2000), 2319–2323.

[71] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha.

2019. DyRep: Learning Representations over Dynamic Graphs. In Proc. of Int.

Conf. on Learning Representations (ICLR).

[72] Ioanna Tsalouchidou, Francesco Bonchi, Gianmarco De Francisci Morales, and

Ricardo Baeza-Yates. 2020. Scalable Dynamic Graph Summarization. IEEE

Transactions on Knowledge and Data Engineering (TKDE) 32, 2 (2020), 360–373.

[73] Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras, Ivan V.

Oseledets, and Emmanuel Müller. 2021. FREDE: Anytime Graph Embeddings.

Proc. of the VLDB Endowment (PVLDB) 14, 6 (2021), 1102–1110.

[74] Philippe Vanhems, Alain Barrat, Ciro Cattuto, Jean-François Pinton, Nagham

Khanafer, Corinne Régis, Byeul-a Kim, Brigitte Comte, and Nicolas Voirin. 2013.

Estimating Potential Infection Transmission Routes in Hospital Wards Using

Wearable Proximity Sensors. PLOS ONE 8, 9 (2013), 1–9.

[75] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In Proc. of Int. Conf.

on Learning Representations (ICLR).

[76] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,

and R. Devon Hjelm. 2019. Deep Graph Infomax. https://github.com/PetarV-

/DGI. In Proc. of Int. Conf. on Learning Representations (ICLR).

[77] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P. Gummadi. 2009.

On the Evolution of User Interaction in Facebook. In Proc. of ACM Workshop on

Online Social Networks (WOSN). 37–42.

[78] Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. 2020. Streaming Graph

Neural Networks via Continual Learning. In Proc. of Int. Conf. on Information

and Knowledge Management (CIKM). 1515–1524.

[79] Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang,

Xinguang Wang, Ping Cui, Yupu Yang, Bowen Sun, and Zhenyu Guo. 2021.

APAN: Asynchronous Propagation Attention Network for Real-time Temporal

Graph Embedding. In Proc. of ACM Int. Conf. on Management of Data (SIGMOD).

2628–2638.

[80] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. 2021. In-

ductive Representation Learning in Temporal Networks via Causal Anonymous

Walks. In Proc. of Int. Conf. on Learning Representations (ICLR).

[81] B.Weisfeiler and A. A. Lehman. 1968. The reduction of a graph to canonical form

and the algebra which appears therein. Nauchno-Technicheskaya Informatsia 2,

9 (1968), 12–16.

[82] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu.

2014. Path Problems in Temporal Graphs. Proc. of the VLDB Endowment (PVLDB)

7, 9 (2014), 721–732.

[83] Jun Wu, Jingrui He, and Jiejun Xu. 2019. DEMO-Net: Degree-specific Graph

Neural Networks for Node and Graph Classification. In Proc. of ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining (KDD). 406–415.

[84] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE

Transactions on Neural Networks and Learning Systems (TNNLS) 32, 1 (2021),

4–24.

[85] Wenwen Xia, Yuchen Li, Jianwei Tian, and Shenghong Li. 2021. Forecasting

Interaction Order on Temporal Graphs. In Proc. of ACM SIGKDD Int. Conf. on

Knowledge Discovery and Data Mining (KDD). 1884–1893.

[86] Chengjin Xu, Fenglong Su, and Jens Lehmann. 2021. Time-aware Graph Neural

Network for Entity Alignment between Temporal Knowledge Graphs. In Proc. of

Conf. on Empirical Methods in Natural Language Processing (EMNLP). 8999–9010.

[87] Dongkuan Xu, Wei Cheng, Dongsheng Luo, Xiao Liu, and Xiang Zhang. 2019.

Spatio-Temporal Attentive RNN for Node Classification in Temporal Attributed

Graphs. In Proc. of Int. Joint Conf. on Artificial Intelligence (IJCAI). 3947–3953.

[88] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kan-

nan Achan. 2020. Inductive representation learning on temporal

graphs. https://github.com/StatsDLMathsRecomSys/Inductive-representation-

learning-on-temporal-graphs. In Proc. of Int. Conf. on Learning Representations

(ICLR).

[89] Keyulu Xu,Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful

are Graph Neural Networks?. In Proc. of Int. Conf. on Learning Representations

(ICLR).

[90] Yonghui Xu, Shengjie Sun, Huiguo Zhang, Chang’an Yi, Yuan Miao, Dong Yang,

Xiaonan Meng, Yi Hu, Ke Wang, Huaqing Min, Hengjie Song, and Chuanyan

Miao. 2022. Time-Aware Graph Embedding: A Temporal Smoothness and

Task-Oriented Approach. ACM Transactions on Knowledge Discovery from Data

(TKDD) 16, 3 (2022), 56:1–56:23.

[91] Cheng Yang, Maosong Sun, Zhiyuan Liu, and Cunchao Tu. 2017. Fast Network

Embedding Enhancement via High Order Proximity Approximation. In Proc. of

Int. Joint Conf. on Artificial Intelligence (IJCAI). 3894–3900.

[92] Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, Juncheng Liu, and Sourav S.

Bhowmick. 2020. Scaling Attributed Network Embedding to Massive Graphs.

Proc. of the VLDB Endowment (PVLDB) 14, 1 (2020), 37–49.

[93] Wenchao Yu, Wei Cheng, Charu C. Aggarwal, Haifeng Chen, and Wei Wang.

2017. Link Prediction with Spatial and Temporal Consistency in Dynamic

Networks. In Proc. of Int. Joint Conf. on Artificial Intelligence (IJCAI). 3343–3349.

[94] Wenchao Yu, Wei Cheng, Charu C. Aggarwal, Kai Zhang, Haifeng Chen, and

Wei Wang. 2018. NetWalk: A Flexible Deep Embedding Approach for Anomaly

Detection inDynamicNetworks. In Proc. of ACM SIGKDD Int. Conf. on Knowledge

Discovery and Data Mining (KDD). 2672–2681.

[95] Ziwei Zhang, Peng Cui, Jian Pei, Xiao Wang, and Wenwu Zhu. 2018. TIMERS:

Error-Bounded SVD Restart on Dynamic Networks. In Proc. of AAAI Conf. on

Artificial Intelligence (AAAI). 224–231.

[96] Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Xuanrong Yao, and Wenwu Zhu.

2018. Arbitrary-Order Proximity Preserved Network Embedding. In Proc. of ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD). 2778–2786.

15

https://github.com/twitter-research/tgn
https://github.com/mtang724/NWR-GAE
https://github.com/PetarV-/DGI
https://github.com/PetarV-/DGI
https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-temporal-graphs
https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-temporal-graphs

[97] Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2022. Deep Learning on Graphs: A

Survey. IEEE Transactions on Knowledge and Data Engineering (TKDE) 34, 1

(2022), 249–270.

[98] Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and

George Karypis. 2022. TGL: A General Framework for Temporal GNN Training

on Billion-Scale Graphs. Proc. of the VLDB Endowment (PVLDB) 15, 8 (2022),

1572–1580.

[99] Le-kui Zhou, Yang Yang, Xiang Ren, FeiWu, and Yueting Zhuang. 2018. Dynamic

Network Embedding by Modeling Triadic Closure Process. In Proc. of AAAI

Conf. on Artificial Intelligence (AAAI). 571–578.

[100] Dingyuan Zhu, Peng Cui, Ziwei Zhang, Jian Pei, and Wenwu Zhu. 2018. High-

Order Proximity Preserved Embedding for Dynamic Networks. IEEE Transac-

tions on Knowledge and Data Engineering (TKDE) 30, 11 (2018), 2134–2144.

[101] Linhong Zhu, Dong Guo, Junming Yin, Greg Ver Steeg, and Aram Galstyan.

2016. Scalable Temporal Latent Space Inference for Link Prediction in Dynamic

Social Networks. IEEE Transactions on Knowledge and Data Engineering (TKDE)

28, 10 (2016), 2765–2777.

[102] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. 2018.

Embedding Temporal Network via Neighborhood Formation. In Proc. of ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD). 2857–2866.

16

A APPENDIX - PROPERTIES ON A TOY

DATASET

Here we experimentally test the capability of T-SIRGN and its

competitors to adhere to specific desired properties (including those

discussed in Section 4.2). To this end, we created a toy temporal

graph (Figure 9-(a)), and generated 6-dimensional embeddings

from each method. Note that only the unsupervised versions of

the related works are examined, as this dataset has no node labels.

The embeddings for the lettered nodes in red (those of interest to

demonstrate the properties) were then normalized and reduced to

2 dimensions using a PCA, in order to plot them in visual space.

These plots are illustrated in Figures 9-(b)–(j).

Aspects of interest. Specific characteristics of the toy dataset

make it ideal to demonstrate our desired properties:

(C1) Nodes N and P have neighborhoods with identical structure

(i.e., those neighborhoods are isomorphic), in every times-

tamp. However, they have neighboring nodes with different

node identity: this removes the possibility of generating sim-

ilar embeddings based upon node connectivity.

(C2) NodesA and F have identical structures, different timestamps,

but identical “time deltas”, i.e., identical change in time over

the timestamps (𝑡2 − 𝑡1 = 𝑡4 − 𝑡3 = 4).

(C3) Node J has the same time delta as A and F, along with the

same degree, but a slightly different structure. Node Q has

a different structure and degree than A, but identical times-

tamps. Both J and Q have different structure than all other

lettered nodes and one another.

(C4) Nodes K,M, and N have identical structure as A and F, but
have time deltas of 5, 6, and 50, respectively, to test the effect

of increasingly larger time deltas.

Findings. (C1) Our T-SIRGN (run with 𝛼 = 10) creates representa-

tions in which N and P are directly overlapping. This demonstrates

that it generates identical embeddings for two nodes with identi-

cal structure and timestamps, regardless of the their connectivity

properties (Theorem 4.3). Moreover, the embeddings of N and P
are correctly far away from the other nodes, due to their vastly

different time delta. Importantly, DynGem, U-CTGCN-C (using a

connectivity-based loss), U-GCRN , and TIMERS all generate dif-

ferent representations for N and P, due to their connections with

neighbor nodes with different node identities. U-CTGCN-S (using

a structural loss) and TGAT create identical embeddings for N and

P (but both have other issues, see next).

(C2) A and F are directly overlapping one another for T-SIRGN.
This demonstrates the time invariance property of T-SIRGN (The-

orem 4.3, again): two nodes with identical structure and time delta

will also have identical embeddings. U-CTGCN-C does not capture

this property, nor does U-GCRN , both in fact show no overlap

between any nodes. TGAT does show some overlap between nodes,

but oddly an overlap exists between A and Q, which have iden-

tical timestamps, but different structures and even node degree.

U-CTGCN-S and TGN appear to capture the overlap between A
and F, but closer inspection shows that U-CTGCN-S generates the

same representation for A, F, J, K, M and Q, which includes nodes

with differing timestamps, time deltas, and structures. TGN gener-

ates identical representations for A, F, J, P and K,M,N,Q. This is odd,

𝑡1 = 1 𝑡2 = 5 𝑡3 = 10 𝑡4 = 14 𝑡5 = 20 𝑡6 = 24

A

1 2

3

Q

56 57

58

A

4 5

6

7

8

Q

50 60

61

62

63

F

9 10

11

F

12 13

14

15

16

J

17 18

6

7

8

J

19 20

21

22

23

𝑡7 = 30 𝑡8 = 35 𝑡9 = 40 𝑡10 = 46 𝑡11 = 50 𝑡12 = 100

K

24 25

26

K

27 28

29

30

31

M

32 33

34

M

35 36

37

38

39

N

40 41

42

P

48 49

50

N

43 44

45

46

47

P

51 52

53

54

55

(a) Toy temporal graph

N

P
A,F,J,K,M,Q

A,F,J,K,M,Q

N

P
A F

J

K

M

N
Q

P

(b) DynGem (c) TIMERS (d) U-GCRN

A,F,J,K,M,Q
N,P

N

Q

J

K

P
A

M

F

(e) U-CTGCN-S (f) U-CTGCN-C (g) TGAT

Q

JA,F,K,M,N,P J MK

Q

N,P
A,F

(h) TGN (i) SS-TSIRGN (j) T-SIRGN (𝛼 = 10)

Figure 9: Results of the experiment to check the capability of the pro-

posed T-SIRGN and its competitors of fulfilling a number of properties

of interest. (a) Toy temporal graph, composed of twelve graph snapshots,

from timestamp 𝑡1 to timestamp 𝑡12. Every snapshot is plotted right be-

low its corresponding timestamp. Lettered nodes (in red) are the ones of

interest. Black nodes have node identities all different than each other.

(b)–(j) 2D projection of the embeddings generated on the toy graph by

the various methods.

as A and Q have identical timestamps but different structure, and

are placed far apart. Similarly, N and P have identical timestamps

and structure but different node identities, and are placed apart, as

well as A and F have identical structure but differing time deltas,

and showed overlapping embeddings. No pattern of logic for TGN
can be defined using these results. Thus, the overlap between A and

F recognized by U-CTGCN-S and TGN results from an inability

to discriminate between nodes, rather than an ability to capture

structural or time delta similarities. The same observation holds

for DynGem and TIMERS, as well.
(C3) T-SIRGN generates an embedding for J that is near those

for A and F. This is desirable, as these nodes have structures that
differ by only a single edge in each timestamp, and share identical

17

time deltas. When the temporal aspect is given lower weight (with

𝛼 close to 0, in the SS-TSIRGN variant), the structure differences

becomemore impactful, and J is (incorrectly) separated farther from
the others. Importantly, J and Q have different structures from A,
F, K, M, N, and P and from each other. For a method to claim the

ability to capture structural roles, J and Q should be separated in

the embedding space from one another and from the others.

(C4) {A, F}, K andM have embeddings for T-SIRGN that sit close

to one another, while remaining different. This is desirable as those

nodes have identical structure, and only a small difference (i.e., 1)

in their time deltas. Conversely, 𝑁, 𝑃 is correctly placed far away

from all those nodes: although they share the same structure with

the others, their time deltas are much higher (i.e., 50 vs. 4,5, and

6). For TGAT, M is projected far from the other nodes, though it

has identical structure to A, but with a time delta that differs by

only 1. SS-TSIRGN, DynGem, U-CTGCN-S, and TIMERS create

identical embeddings for (at least part of) these nodes, thus failing

to recognize the temporal differences altogether.

18

	Abstract
	1 Introduction
	2 Preliminaries and Background
	2.1 Problem statement
	2.2 State of the art and limitations
	2.3 Other related works

	3 Proposed Method: Temporal SIR-GN
	3.1 Design principles
	3.2 Main loop
	3.3 Clustering and node description
	3.4 Temporal aggregation
	3.5 Extensions

	4 Algorithm analysis
	4.1 Computational complexity
	4.2 Theoretical properties
	4.3 Empirical properties

	5 Experiments
	5.1 Node classification
	5.2 Regression
	5.3 Efficiency
	5.4 Parameter analysis

	6 Conclusion
	Acknowledgments
	References
	A APPENDIX - Properties on a toy dataset

