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ABSTRACT

Node representation learning (NRL) generates numerical vectors
(embeddings) for the nodes of a graph. Structural NRL specifically
assigns similar node embeddings for those nodes that exhibit sim-
ilar structural roles. This is in contrast with its proximity-based
counterpart, wherein similarity between embeddings reflects spa-
tial proximity among nodes. Structural NRL is useful for tasks such
as node classification where nodes of the same class share structural
roles, though there may exist a distant, or no path between them.
Athough structural NRL has been well-studied in static graphs,
it has received limited attention in the temporal setting. Here, the
embeddings are required to represent the evolution of nodes’ struc-
tural roles over time. The existing methods are limited in terms of
efficiency and effectiveness: they scale poorly to even moderate
number of timestamps, or capture structural role only tangentially.
In this work, we present a novel unsupervised approach to struc-
tural representation learning for temporal graphs that overcomes
these limitations. For each node, our approach clusters then ag-
gregates the embedding of a node’s neighbors for each timestamp,
followed by a further temporal aggregation of all timestamps. This is
repeated for (at most) d iterations, so as to acquire information from
the d-hop neighborhood of a node. Our approach takes linear time
in the number of overall temporal edges, and possesses important
theoretical properties that formally demonstrate its effectiveness.
Experiments on synthetic and real datasets show superior per-
formance in node classification, where it is necessary to capture
changes in a node’s neighborhood structure over time to identify
its class. Similar results are achieved in regression experiments. We
also assess the superior scalability of our approach to large graphs.
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1 INTRODUCTION

Graphs, i.e., sets of entities (nodes) linked to one other (via edges),
have become a ubiquitous model for representing real-world data
from a plethora of domains [2, 13, 18, 33]. Graph representation
learning (or graph embedding) automates the task of assigning
elements of a graph (e.g., nodes, edges, subgraphs, entire graphs)
numerical vectors — termed embeddings or representations! - such
that the similarity between those elements in the graph corresponds
to the similarity between their embeddings [10, 29, 84, 97]. Node
representation learning (NRL) is the term used when embeddings
are generated specifically for the graph nodes.

Importantly, the notion of similarity in NRL is not fixed; ap-
proaches can largely be understood as capturing either node prox-
imity or structural properties in their representations. Proximity-
based approaches [9, 24, 52, 68, 73, 91, 96] preserve the information
about connections between nodes, assigning similar representa-
tions for nodes close in the graph in terms of d-hop reachability,
co-occurence in a random walk, Personalized PageRank, etc. Con-
versely, structural-role similarity is concerned with information
about nodes’ neighborhood structure (Figures 1-(I)—(II)).2

NRL has been employed in several downstream tasks, including
node classification, link prediction, clustering, graph visualization,
graph alignment, and graph summarization [10, 57, 97]. Either
methodology (proximity-based or structural) is useful in certain
circumstances. As an example, structural approaches are useful for
node classification, when the node labels are not determined by
proximity/homophily, rather by isomorphic local subgraph struc-
tures. In contrast, tasks such as link prediction may benefit from
use of proximity-based methods, where connections between nodes
are preserved in node representations [28, 30, 54, 56, 57].

A temporal graph is one whose edges change over time. It is
a sequence of graph snapshots representing the nodes and edges
at specific timestamps. Temporal graphs have received consider-
able attention regarding a variety of problems [7, 20, 67, 82, 85],
including NRL [31]. Structural NRL for temporal graphs yields em-
beddings that encode the temporal evolution of the (role played
by the) nodes [31]. This temporal evolution may lead to different
structural roles than the static case (cf. Figure 1-(III)). Thus, static
NRL approaches cannot easily be adapted to temporal graphs.

Applications. A major application of temporal structural NRL is
on any node classification task where node interactions change over
time, and node labels are not homophily-driven, rather they depend
on structural properties of the graph. For instance, classifying nodes

!We use the two terms interchangeably throughout the paper.

2Nevertheless, the literature lacks in uniformity on this terminology. The term “struc-
tural” may refer to notions other than that of our interest. E.g., “global structural
information” or similar terms are used [9, 63], which correspond to higher-order
spatial proximity (i.e., proximity based on nodes’” d-hop neighborhoods), rather than
the actual structural role discussed in this work..
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Figure 1: Ilustration of various kinds of node representation learning
(NRL). Similarity in nodes’ colors denotes similarity in nodes’ embeddings.
(I) Proximity-based NRL recognizes {A, B, C} as similar, as they are physi-
cally close in the graph. The same holds for {D, E, F}. (II) Nodes {A, D} are
part of different connected components. Nonetheless, structural NRL recog-
nizes them as similar, as they have isomorphic 1-hop neighborhoods (or, as
formally explained in Section 4.2, there is an automorphism that maps A to
D, and vice versa). The same holds for {B, C, E, F}. (III) Edges are labeled
with timestamps. For simplicity, here is one timestamp per edge, but, in gen-
eral, an edge can be assigned multiple timestamps. Timestamps here come
with no particular constraints: they can be any positive real number such that
t1 <ty <13 < ty. Temporal structural NRL recognizes {A, D} as similar, as they
have isomorphic 1-hop neighborhoods in all the timestamps (or, as formally
explained in Section 4.2, there is a temporal automorphism that maps A to D,
and vice versa). Likewise, {G, ]} are recognized as similar, as they both have
two neighbors in one timestamp, and no neighbors in the other timestamps.
Similar considerations hold for {B, E}, {C, F}, and {H, I, K, L }. Conversely, if
the temporal aspect is not considered, i.e., timestamps on edges are ignored,
very different (structural) embeddings would be yielded: {A, D, G, J} would
wrongly have identical embeddings, and {B, C, E, F, H, I, K, L} as well.

(users) of financial transaction graphs as (non-)fraudulent typically
relies on the the patterns of transactions issued by a user over
time [66]. Embeddings encoding the structural temporal evolution
of a graph are thus well-suited for such a fraud-detection task.
Similarly, in social-trust networks where nodes (users) express
(dis)trust opinions vs. other nodes over time, the goal is to classify
a user as trustful or not. This classification heavily relies on the
temporal structural patterns of the rating received by a user [34].
The biological domain has plenty of applications that can benefit
from temporal structural NRL. For instance, in dynamic protein-
interaction networks, classifying a protein (node) as, e.g., uncharac-
terized/verified depends on the structural patterns of temporal in-
teractions between that protein and the others in the network [19].
Further applications of temporal structural NRL include tasks
other than node classification as well. For instance, the prediction
of properties (e.g., centralities) that depend on time-varying struc-
tural characteristics of a graph, or problems like entity resolution,
alignment and summarization in temporal graphs [40, 72, 86].

Motivation. To the best of our knowledge, the prominent work
that may handle temporal structural NRL (at least to some extent) is
that by Liu et al. [41]. It employs a temporal graph neural network
(GNN) that is based on the notion of k-core, i.e., the maximal sub-
graph whose nodes have degree at least k [4]. Apart from Liu et al,,
there exist several other temporal-GNN-based methods that can
potentially (be adapted to) capture structural roles, though they are
not specifically designed for structural NRL [12, 22, 36, 39, 44, 46,
50, 60, 62, 64, 78, 79, 87, 88, 98]. All such methods (including that by
Liu et al.) have limited efficiency, as they employ computationally-
expensive models, and limited effectiveness, due to the use of loss
functions that are not ideally suited for structural NRL.

Contributions. In this work, we tackle the problem of structural

NRL in temporal graphs. The goal is to generate a single embedding
for every node that encodes the temporal evolution of that node’s

structural role. The target structural roles are defined based on the
adaptation of graph isomorphism to the temporal setting.
Proposed method. We design Temporal SIR-GN, a novel unsuper-
vised approach that improves upon efficiency and effectiveness of
the state of the art. Temporal SIR-GN is inspired by SIR-GN [30],
a recently-introduced efficient and effective method for structural
NRL in static graphs. Temporal SIR-GN adopts SIR-GN’s idea of it-
eratively clustering and aggregating the representations of a node’s
neighbors, which in turn emulates the well-established Weisfeiler-
Lehman isomorphism test [81]. The main difference between our
approach and basic SIR-GN is that the aggregation of nodes’ rep-
resentations must now consider the temporal dimension. We ac-
complish this by computing the expected number of transitions
from a cluster C to any other cluster C’ in the temporal sequence
of embeddings. A major challenge of this temporal aggregation
is that its naive computation takes quadratic time in the number
of timestamps. We thus derive a factorization that converts the
quadratic cost to linear, without losing exactness. Clustering and
temporal aggregation are repeated for (at most) d iterations, so as to
explore d levels of depth of the temporal structure around a node.
Benefits of the proposed method include: (i) it takes linear time in
the number of temporal edges, while the existing methods are
slower, both in terms of theoretical time complexity, and especially
in practice, due to their many additional maintenance costs; (ii) it
keeps in main memory one embedding per node, as opposed to
the state of the art, which typically needs to keep in memory one
embedding for every node and every timestamp; (iii) it is backed
by a theoretical analysis that formally shows how it preserves
key temporal-structural information; (iv) it employs no sequence-
learning models: besides enabling efficiency, this makes the method
lightweight and easy-to-implement.

Summary and roadmap. To summarize, in this work, we:

o Tackle the problem of temporal structural NRL (Section 2).

e Devise Temporal SIR-GN, a novel unsupervised approach to
temporal structural NRL that overcomes existing limitations
of efficiency and effectiveness (Section 3).

o Show how to perform temporal aggregation in Temporal SIR-
GN in linear time in the number of timestamps (Section 3.4).

e Prove theoretical properties about how Temporal SIR-GN
preserves temporal structural-role information (Section 4).

e Design testbeds to assess a method in temporal structural
NRL (Section 5). This is a contribution of per-se interest.

o Extensively test Temporal SIR-GN on both synthetic and real
datasets. Results attest its high efficiency and effectiveness
in classification and regression tasks (Sections 5.1-5.4).

Section 6 concludes the paper and discusses ideas for future work.

2 PRELIMINARIES AND BACKGROUND

Let G be a temporal graph G = (V, T, E), where V is a set of nodes,
T C R} is a finite set of timestamps (where a timestamp is a positive
real number), & € V X V X T is a set of temporal edges, i.e., the
set {(u,v,t)} of all node pairs u,v € V and timestamps ¢ € T such
that an edge exists between u and v in ¢. Given a timestamp ¢t € T,
Et ={u,0 € V| (u,0,t) € E}and V; = {u € V | A(u,v) € Et}
denote the set of static edges and nodes existing in ¢, respectively,
and G; = (V;, E;) is the (graph) snapshot of t, i.e., the static graph



corresponding to the projection of G in t. Let also T(u) = {t € T |
u € V;} denote the timestamps in which u € V exists, and 7 =
| ¥ uev T(u)]. Hereinafter, we assume G to be undirected. However,
handling directed graphs is an easy extension (cf. Section 3.5). The
main notations used in the paper are summarized in Table 1.
This temporal graph model is general enough to have edges arbi-
trarily (dis)appear over time, and be present in multiple timestamps.

2.1 Problem statement

We focus on a non-diachronic objective, i.e., generating a single
embedding for each node that encodes the evolution of that node’s
structural role over the whole temporal graph. This differs from a di-
achronic objective [21], where computation of the final embeddings
requires producing and materializing an intermediate embedding
for all timestamps. The problem addressed in this work is:

PrOBLEM 1 (TEMPORAL STRUCTURAL NRL). Given a temporal
graph G = (V, T, &), and a natural number & € N*, compute a
real-valued matrix R € RIV*% where every row R[,| corresponds
to the embedding (or representation) of node u, for all u € V. Each
R[4 encodes the temporal evolution of the structural role of u in G.

We require the temporal structural role in Problem 1 to express
the fact that similar embeddings are assigned to nodes whose local
surrounding subgraphs (e.g., d-hop neighborhoods) are as isomor-
phic as possible. Isomorphism here is intended not only for nodes
and edges, but for the temporal dimension as well. A more detailed
yet formal discussion on the target structural roles is in Section 3.1.

2.2 State of the art and limitations

Existing approaches to temporal structural NRL are based on tem-
poral GNNs, and most employ sequence-learning models. To the
best of our knowledge, the prominent existing method that is (in
part) suited for temporal structural NRL is Liu et al’s CTGCN [41].
It consists of a double-sequence-learning architecture, where Re-
current Neural Networks (RNNs) are nested into a Long Short-Term
Memory (LSTM). The latter has one cell per timestamp, and every
cell is composed (among others) of multiple RNNs. Each RNN pro-
cesses the k-cores of a graph snapshot. Multiple RNNs are stacked
into every LSTM cell, to capture d-hop neighborhood information.
The use of k-cores makes CTGCN able to capture structural roles, at
least to some extent. In fact, two nodes of the same (highest-order)
k-core intuitively have structurally similar neigborhoods, even if
they are far away in the graph. However, being part of the same
k-core is not always a signal of similar structural role: e.g., if the
neighbors that make two nodes belong to the same k-core are in
turn part of very different (highest-order) k-cores.

Other temporal-GNN-based approaches, though not explicitly
conceived for structural NRL, can potentially be adapted to it. In fact,
they generate embeddings by iteratively aggregating the embed-
dings of a node’s neighbors: this process may capture local isomor-
phisms, hence structural roles. Many approaches of this kind have
been devised [12, 22, 36, 39, 44, 46, 50, 60, 62, 64, 78, 79, 87, 88, 98].
They all share the same general design principle: GNNs yield indi-
vidual embeddings for every graph snapshot, and all these embed-
dings are then aggregated over time (e.g., via a sequence-learning
model). The differences between the various methods lie in the
design and combination of the individual building blocks.

Running time limitations. The time complexity of all the above
methods is mostly due to the processing of every graph snapshot
via a GNN, which overall takes Q(d X h X (|V| X |T| + X ;e Et)) =
Q(dxhx (V| x|T|+|&|)) time. Q(+) is used here because it is a
lower bound, as several “hidden” steps are not included in it, such
as computing the loss function (which may be expensive, e.g., for
an unsupervised graph-reconstruction loss), or the internal steps of
a sequence-learning model (e.g., handling the internal parameters
of every cell of an LSTM). In this regard, Liu et al’s CTGCN comes
with a specific additional (non-negligible) k;uqx factor, that is the
maximum number of k-cores in a snapshot (kpax = O(|V])).
Conversely, our method takes O(dx (|E] XVh+T xh+|V|xhVh))
time (cf. Section 4.1). This gives a theoretical speed-up that is
considerable for large |T|, as in this case 7~ < |V| X |T|, and Vh <
|T|. In practice, the speed-up is much more evident (cf. Section 5.3),
due to the aforementioned occult costs of the existing methods.

Storage space limitations. Excluding the input graph, the above
methods typically require O(|T| X |V| X h) space, as an embedding
for every node and every timestamp has to be materialized and
kept in memory (e.g., during backpropagation). In contrast, our
Temporal SIR-GN method needs O(|V| X h) space. This corresponds
to an O(|T|) improvement, which is particularly appreciable when
the number of timestamps is relatively high.

Effectiveness limitations. The notion of k-core in Liu et al’s
CTGCN [41] allows for (implicitly) capturing structural roles. How-
ever, the two loss functions of CTGCN are not ideally suited for
structural NRL. CTGCN’s first loss function is defined as the dis-
tance between nodes’ embeddings and nodes’ features (transformed
by neural-network layers). That loss is claimed to be structural-role-
preserving, but it comes with an important conceptual limitation:
it enforces the embeddings of any two nodes to be similar merely
if their features are similar, no matter the graph topology. At the
same time, CTGCN’s second loss is based on graph reconstruction,
whose use makes the method biased towards proximity.

Similarly, the other existing temporal-GNN-based approaches [12,
39, 44, 46, 50, 60, 62, 64, 78, 87, 88] employ either supervised losses
defined based on nodes’ labels or unsupervised losses based on
graph reconstruction. Both those losses are prone to learn spatial
proximity. Particularly, supervised losses enforce a node’s embed-
ding to be close to the embeddings of its majority-label neighbors.
One might utilize general structural-role-aware losses in those ar-
chitectures. Unfortunately, designing a loss of this kind is hard. To
our knowledge, the only existing attempt is aforementioned Liu
et al’s one, which has the previously-discussed downsides.

2.3 Other related works

Proximity-based NRL in static graphs has its roots in the con-
text of matrix factorization [5, 59, 70]. A modern reinterpretation of
NRL, starting from the first decade of 2000s, has comprised methods
aimed at preserving d-hop reachability, co-occurrence in a random
walk, and Personalized PageRank [9, 24, 52, 68, 73, 91, 92, 96].

Structural NRL in static graphs includes approaches based on
attributed random walks [3], diffusion wavelets [14], Gaussian em-
bedding [51], structural identity [54], graphlets [56, 58], hybrid
methods [69], and SIR-GN [30], the precursor of our approach.



Table 1: Main notations used in this paper
General notations

G=(V,T.E) Temporal graph (V: vertices; T: timestamps; &: temporal edges)
Gy=(V1,Er) Graph snapshot of timestamp #
T (u) Set of timestamps in which node u exists
T Zuev [T(w)]
d Depth of exploration (i.e., max iterations of Temporal SIR-GN)
h Dimensionality of the node embeddings
R Matrix containing the node embeddings (representations)

Notations from the proposed SIR-GN (all vectors are row vectors)

M[x] For any matrix M, the row of M corresponding to node x
a Parameter to modulate temporal effect in the node representations
CR Matrix containing the node representations from the current iteration
D Matrix containing nodes” description vectors (Def. 3.3)
nRep Number of distinct node representations (from the previous iteration)
c Number of clusters of node representations
CcC Centers of the clusters of node representations
Ty Vector of squared Euclidean distances from node u to cluster centers
N} Neighborhood description vector (Def. 3.4)
CFy, Cluster frequency vector (Def. 3.5)
CT, Cluster transition matrix (Def. 3.7)
Zf‘ Auxiliary vector to speed-up the computation of CFy,
nbr(u, t) Set of neighbors of node u at timestamp

KMeans() Function executing K-Means clustering algorithm
Distance() Function computing distances to cluster centers
MinMax () Function computing min-max normalization of a matrix

Graph Neural Networks (GNNs) have been widely employed
in NRL [6, 25, 32, 61, 75, 76, 83, 89]. GNNs yield embeddings by
iteratively aggregating the embeddings of a node’s neighbors. As
such, they have the potential of capturing structural-role similarity.
Nevertheless, major obstacles for GNNs to be truly structural-role-
aware are the neighborhood-sampling trick, and the loss functions
that are not appropriate for structural NRL (cf. Section 2.2).

For a more comprehensive overview of the vast literature on
NRL in static graphs, we refer to 8, 10, 29, 57, 84, 97].
Proximity-based NRL in temporal graphs [15] includes meth-
ods that enforce embedding alignment between consecutive snap-
shots [15, 65, 90, 101], or decompose the adjacency matrices of the
snapshots [43, 93, 95], or approaches based on temporal random
walks [27, 45, 47, 48, 53, 94], temporal point processes [16, 42, 71, 99,
100, 102], causal anonymous walks (for edge embedding) [80].

3 PROPOSED METHOD: TEMPORAL SIR-GN
3.1 Design principles

Target structures and desiderata. A principled way to charac-
terize structural roles in the static setting is via the notion of graph
isomorphism [28, 89]: nodes are recognized as structurally similar
based on how much their surrounding subgraphs are isomorphic.
For this reason, here we identify our target temporal structural
patterns by adapting graph isomorphism to the temporal setting.

Definition 3.1 (Isomorphism, subgraph isomorphism, automor-
phism). An isomorphism between graphs G; = (V1,E1), G2 =
(V2, E2) is a permutation function F: Vi — Va, i.e., a function that
assigns to each node u; € V; one and only one node uy € V3, such
that (F(ui), F(v1)) € Ep if and only if (u1,v1) € Ei. A subgraph
isomorphism from G to G’ is an isomorphism between G and a
subgraph of G’. An automorphism in G is an isomorphism between
G and G itself. Nodes u, u’ of G are said automorphic if there exists
an automorphism in G mapping u to u’ (and vice versa).

Based on the above definition, nodes u and u’ are recognized
as automorphic they share identical degree, and all their k-hop

neighbors share identical degree, for all k =1,. .., kmax (kmax is
the maximum number of hops possible from both nodes). An auto-
morphism for the toy graph in Figure 1-(I) is F(A) =D, F(B) =E,
F(C)=C, F(D)=A, F(E)=B, F(F)=F.

Definition 3.2 (Temporal isomorphism, subgraph isomorphism, au-
tomorphism). A temporal isomorphism between temporal graphs
G1=(W,T1,E1), G=(Va, Tz, &2) isa permutation function ¥ : V; —
V3 such that, for every u € V1, there exists Ay € (—co, +00) such that
(F (w), F (v),t + Ay) € & if and only if (u,0,t) € E;1. A temporal
subgraph isomorphism from G to G’ is a temporal isomorphism be-
tween G and a temporal subgraph of G’. A temporal automorphism
in G is a temporal isomorphism between G and G itself. Nodes
u,u’ of G are said temporally-automorphic if there exists a temporal
automorphism in G mapping u to u” (and vice versa).

Let us elaborate on the definition of temporal automorphism.
Similar considerations hold for temporal (subgraph) isomorphism.
Temporal automorphism extends the notion of automorphism to
the temporal setting by allowing automorphism to occur across
graph snapshots. Ay, is the temporal shift between snapshots across
which an automorphism should hold in order to have a temporal
automorphism. Specifically, if A, =0, for having a temporal auto-
morphism ¥ that maps u to u’, there must exist an automorphism
F; that maps u to v’ in the same snapshot occurring at timestamp ¢,
for all t. Instead, if A, >0 (resp., Ay, < 0) the automorphism mapping
u to u’ is required across the snapshot at timestamp ¢ and the snap-
shot occurring an amount |A,| of time after (resp., before) ¢, for all
t. For instance, assuming t; =1, #, =2, 13=3, t4 =4, a temporal auto-
morphism for the graph in Figure 1-(III) is ¥ (A) =D, F(B) =E,
F(C)=F,F(D)=A F(E)=B,F(F)=C, ¥(G) =), F(H) =K,
F =L FU) =G, F(K)=H, F(L) = |; with Ay = Ag = Ac = 1,
ADZAngFZ—l, AG ZAH = A[=2, AJZAK=AL=—2. As akey dif-
ference to the static setting, though there exists an automorphism
(ignoring timestamps) mapping B to C, no temporal automorphism
exists that maps those two nodes to one another, because they
are temporally structurally different from the perspective of their
common neighbor A (i.e., B comes after C in time).

Whenever any two nodes u and v are temporally-automorphic,
they are temporally structurally identical to each other. This is
a limit case, for which a desirable requirement is to have identi-
cal embeddings produced for u and v. More generally, the closer
two nodes are to be temporally automorphic, the more structurally
similar they are (cf Figure 2): we take this as our main desider-
atum in designing an algorithm for the TEMPORAL STRUCTURAL
NRL problem. In Section 4, we show that our algorithm possesses
theoretical guarantees for the limit case of temporally-automorphic
nodes, while it comes with empirical evidence in the general case.

Algorithm rationale. The proposed Temporal SIR-GN method
resembles the approach in SIR-GN [30], a method for structural
NRL in static graphs that has been shown to achieve high effec-
tiveness and efficiency. The logic underlying SIR-GN emulates the
Weisfeiler-Lehman (WL) algorithm [26, 81], a popular method de-
signed (among others) to test for graph isomorphism. WL compares
structural representations generated for nodes in separate graphs.
These representations are computed by iteratively updating the cur-
rent representations via aggregation of additional layers of nodes’
neighborhoods. Representations are stored as a multiset that is then
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Figure 2: (1) Toy temporal graph G. For simplicity, G has one timestamp
per edge (though, in general, edges may have multiple timestamps). Lettered
nodes (A, B, C) are the ones of interest. Intuitively, A is closer to be temporally-
automorphic to B than C, as A and B share two temporal neighbors, while A
and C only one. This can be better observed with the maximal temporally
isomorphic subgraphs in (II)-(III). (II) Gap: maximal temporal graph that is
temporally subgraph isomorphic to G, and such that there exist two temporal
subgraph isomorphisms 77, 7, that map the same node of Gap to A and B,
respectively. ¢ is any positive real number. 7, 7 are: F1(X) = A, F1(x1) =
C, Fi(xz) = 1, Fi(x3) = 2, Fi(xs) = B; F2(X) = B, F2(x1) = C, F2(x2) = 1,
Fa(x3) = 2, F2(x4) = A. (III) Gac: same as (II), but for nodes A and C. The
temporal subgraph isomorphisms 77, 7, in this case are: 71 (Y) =A, F1(y1) =
C Fily) = L, Fi(ys) = 2, Fi(ye) = B; B(Y) = C, Fa(yn) = A, Falw) = 1,
F2(ys3) =2, F2(ys) = B. A is 1— #; for all the nodes and temporal subgraph
isomorphisms.

used as a hash for unique structures (referred to as colors). Updat-
ing is performed until the number of unique hashes is unchanged.
SIR-GN capitalizes on the aptitude of WL to capture structural
information, but with important modifications. First, SIR-GN clus-
ters node representations to control the overall representation size;
then the probability of membership in each cluster is calculated for
each node representation. Second, rather than aggregating neigh-
bors via multisets and hashing, each neighbor’s representation is
summed to form nodes’ updated representations. This sum aggre-
gation generates a node representation at iteration i wherein each
component of the vector correspondsWE to the expected number of
i-hop neighbors of the node that are in a specific structural cluster.

Temporal SIR-GN can be viewed as the temporal version of SIR-
GN. The idea of emulating SIR-GN, and, in turn, WL appears natural
in order to identify temporal structures resembling (sub)graph iso-
morphism. Clustering and neighbor aggregation in Temporal SIR-
GN are (mostly) borrowed from SIR-GN. A major novelty lies in
the temporal aggregation, which is not present in SIR-GN, as it
handles static graphs. This is a technically challenging step, as it in
principle requires a pairwise comparison between timestamps. In
the following, we show how to overcome this quadratic explosion.

3.2 Main loop

The pseudocode of Temporal SIR-GN is shown in Algorithm 1,
while Table 1 summarizes its main notations, and Figure 3 pro-
vides an example of its execution. The algorithm takes as input a
temporal graph G = (V, T, £), and three parameters (all explained
in more detail during the description of the algorithm):

e d € N*: an upper bound on the number of iterations.

e ¢ € N*: number of clusters of node representations, which
determines the dimensionality h of the embeddings (h=c%+c).

e o € R* modulates the impact of the temporal aggregation.

The suggested default parameters are « = 1 and d = oo, so as to
let the method run until the stopping criterion is met. Parameter
c is set so that the resulting c¢? + ¢ embedding dimensionality is
the closest to the desired h. Specifically, one can set c to either the
largest integer such that ¢? + ¢ < h, or the smallest integer such

Algorithm 1 Temporal SIR-GN

Input: Temporal graph G = (V, T, §); natural numbers d, ¢ > 0; real number & > 0

Output: Matrix R € R'V‘X@ZH) containing the embeddings (representations) of all
the nodes in V'
i=0; nRep=0; initialize a matrix D° € RIVIXe o 1/c
R = TEMPORALAGGREGATION(G, ¢, D’ a)
while i <d A nRep < |{R’[u] |u eV} do

nRep = |{Rfu] |ueV}|

D'i = CLUSTERINGNODEDESCRIPTION(V,Ri, c)

R¥*! = TEMPORALAGGREGATION( G, ¢, D, )

i=i+1
end while A »
: R=R"ifnRep > |{Rtu] | u € V}|; otherwise, R = R*

bR A B U R

10: function CLusTERINGNODEDESCRIPTION(V, R, ¢)
11: Initialize a matrix D € RIV*¢ t0 0

12: RN = MinMax(R)

13: CC = KMeans(RN, c)

14: forallu € V do

> Def. 3.3

> Clustering step
> Node description loop

15: I, = Distance(RN[,], CC)

16: Dy = (max(Ty,) - I,) /(max(Ty,) — min(Ly,))
17: Diy) =Dyy) /sum(D[u])

18: end for

19: return D

20: end function

21: function TEMPORALAGGREGATION(G, ¢, D, )

22: Initialize matrix CR € RIVIx(c2+e) to 0
23: forallu € V do
24: Let [#1,..., {7 (u)|] be T(u) sorted in ascending order
17
25: Initialize matrix CT,,€ R°*¢and vectors CFu_,Zu‘T(u)I €Rto 0
4r
26: Nt = Zvenbr(u,tlT(u)‘) Do)
27: for all a from |T(u)| —1to 1 do > Temporal aggregation loop
28: Nla = 2venbr(uta) Plo] > Neighbor aggregation (Def. 3.4)
29: CF, = CF, + N/ > Def. 3.5
—(tar1-ta)
30: Zla = ¢ an—a (N,i“+1 +Z,t4“+1) > Lemma 3.8
31: CT, = CT, + (N/@)T z!a > Def. 3.7; Lemma 3.9
32: end for
33: CR[y] = concatenate(flatten(CT,,), CFy)

34: end for
35: return CR
36: end function

that c2+c¢ > h, and use standard tricks if ¢ +¢ # h. If ¢ +¢ < h, the
embeddings can be padded with zeros. If ¢? + ¢ > h, dimensionality
reduction techniques can be employed (as done, e.g., in [14]).

The main principle of Temporal SIR-GN is to identify c clusters
of nodes’ temporal structural roles, and let the representation of
a node reflect how well its k-hop neighborhood (k < d) complies
with those clusters. To accomplish this, the first step consists in
computing what we term nodes’ description vectors:

Definition 3.3 (Description vector). Given c clusters of node rep-
resentations, the description vector D] of anode u € V is a c-
dimensional vector, where each component j represents the proba-
bility that u’s representation belongs to cluster j.

After they are initialized to 1/c (Line 1), at each iteration of the
main loop (Line 3) description vectors are (i) updated in terms of the
new clustering of node representations (Line 5), and (ii) temporally
aggregated, so as to form the actual node representations of the
current iteration (Line 6). Clustering and temporal aggregation are
executed for the lesser of either the user-input d iterations or until a
stopping criterion is met. The stopping criterion is defined as with
the WL algorithm, wherein the current number of unique node



Description vectors (Def. 3.3):

e A 02 05 03
CLUSTERING B 0.7 0.2 0.1
NoDEDESCRIPTION C 0.4 0.4 0.2

(Alg. 1, Line 10) D 01 0.1 0.8

Neighbor aggregation
(Alg. 1, Line 28)

Neighborhood description vectors (Def. 3.4):
Node_| Nt | N2 | N
A 0.1 0.1 0.1 0.8 0.3 0.9 0 0 0
B
€
D

0 0 0 0.6 0.9 0.5 0.1 0.1 0.8
0 0 0 0.7 0.2 0.1 0.1 0.1 0.8
0.2 0.5 0.3 0.2 0.5 0.3 1.1 0.6 0.3

TEMPORALAGGREGATION Example for node D
(Alg. 1, Line 21) shown below

D’s cluster frequency vector (Def. 3.5): CFp= N[t)1 +N[t)2 +N[t)3 =[1.5 1.6 0.9]
D’s cluster transition matrix (Def. 3.7):

(e=(167) x [1.10.6 0.3] T x [0.2 0.5 0.3]+
CTp= +e 159 % [1.10.60.3]Tx [0.20.50.3]+ =
+e~ 779 % [0.2 0.5 0.3]T x [0.2 0.5 0.3])

2.02e-3 5.05e-3 3.03e-3
4.99e-3 1.25e-2 7.49e-3
2.99e-3 7.49e-3 4.49e-3

l D’s representation (Alg. 1, Line 33):
CR{pj=[2.02¢-3 5.05¢-3 3.03¢-3 4.99¢-3 1.25¢-2 7.49¢-3 2.99¢-3 7.49¢-3 4.49%¢-3 1.5 1.6 0.9]

Figure 3: Run-through example of a single iteration of Algorithm 1.

representations (nRep) is no longer increasing. Note that nRep is
expected to increase iteration after iteration, because of increasing
heterogeneity in the clusters, and, in turn, higher variance in the
description vectors. This is in accordance with WL, and it is an
opposite phenomenon to, e.g., the classic over-smoothing issue in
GNNs [11]. The representations yielded at iteration i (R?) are input
to iteration i+1. Once the stopping criterion is met at iteration k < d,
the representation of a node expresses the temporal evolution of
that node’s structure measured out to its k-hop neighborhood. Next,
we describe clustering and temporal aggregation.

3.3 Clustering and node description

The CLUSTERINGNODEDESCRIPTION function (Line 10) first parti-
tions the current node representations into c clusters (Line 13).
Min-max normalization (Line 12) is performed beforehand, as a
common preliminary step in clustering. As a clustering algorithm,
we employ K-Means. This can be, however, replaced with any other
algorithm that produces c cluster centers in the form of numerical
vectors. Then, the new description vectors are computed (Line 14).
Specifically, each component of the description vector D[] of node
u equals to the squared Euclidean distance from u to any cluster
center (Line 15). These distances are in turn converted to the prob-
abilities of membership in the various clusters (Lines 16—17).

3.4 Temporal aggregation

The TEMPORALAGGREGATION function (Line 21) first computes the
neighborhood description vectors (Line 28):

Definition 3.4 (Neighborhood description vector). The neighbor-
hood description vector N} ofanode u € V attimestamp t € T(u) isa

c-dimensional vector, where each component j is the expected num-
ber of neighbors of u at timestamp ¢ whose representation belongs
to cluster j of node representations. That is, N/, = Yoenbr(ut) Dlo]-

The algorithm then computes the cluster frequency vector (Line 29):

Definition 3.5 (Cluster frequency vector). The cluster frequency

vector CF, of a node u € V is a c-dimensional vector, where
each component j is the expected number of times cluster j ap-
pears in u’s neighborhood over all the timestamps. That is, CF, =
YiteT(u) Zoenbr(ut) Dlo] = ZeeT(w) Ni-
CF,, will be part of the ultimate node representations (see below).
However, it contains solely information aggregated over time. We
thus complement CF,, with the cluster transition matrix CT,,, which
keeps track of the temporal transitions 7;; among clusters, occurring
within the neighborhood of u:

Definition 3.6 (Cluster temporal transition). Given clusters j and
I of node representations, a cluster temporal transition t;; between j
and [ within the neighborhood of a node u € V is the expected num-
ber of times j is observed to come before [ in time in u’s neighbor-

hood. That is, Tj1= Zt,t’eT(u),t’>t Zvenbr(u,t) ZU’Enbr(u,t’) D[u] [j]
X Dy 1] = Zerer),r>t NLLTX N [1].

The rationale of the above definition is as follows. For times-
tamps t, t’, the expected number of times cluster j is observed in
u’s neighborhood at timestamp ¢ and cluster [ is observed in u’s
neighborhood at ¢’ is N} [ j] x N,ﬁl [1]. As 7 is the expected number
of times j is observed to come before [ in time in general, here is
the sum of N/ [j] x Nj;/ [1] over all t’ > t. Intuitively, 7;; expresses
how often a structural pattern (cluster) j within a node’s neighbors
gets to another pattern [ in the future. As such, cluster temporal
transitions capture the temporal evolution of structural patterns.

In order to smooth the contribution of distant timestamps, we
also include a time elapse term e~ (=1 ¢ [0, 1]. The idea is that a
large distance between ¢ and t” yields a lower contribution of the
t’—t interval to the aggregation, and vice versa. It can be interpreted
as the probability that a cluster temporal transition occurs from
t to t’. Additionally, we use a parameter @ > 0 to modulate the
impact of the temporal aggregation on the resulting embeddings
(explained below). This leads to the following ultimate definition:

Definition 3.7 (Cluster transition matrix). Givenareal value & > 0,
the cluster transition matrix CT, of anode u € Visa (¢ X ¢)-

dimensional matrix, where every [j, ] corresponds to the cluster
—(t'-t)
temporal transition 7;;, weighted by e "o :

—(t'-t)

CTu=Xirer(u), '>t € (Nli)TNli/ (1)

Ultimate node representations. The cluster transition matrix
CT, is flattened (by concatenating its rows), and further concate-
nated to the cluster frequency vector CF,. This forms the final
node representation (embedding) CR[,| of node u at the current
iteration of Temporal SIR-GN (Line 33). Specifically, CR[,,] is a
(c? + ¢)-dimensional vector, where the first ¢ components repre-
sent the expected number of temporal transitions from each cluster
of node representations to each other cluster, within u’s neighbor-
hood. The remaining ¢ components represent the overall expected
number of times each cluster appears in u’s neighborhood.



—(t'-1t)
Alarge or small « makese™ «  close to 1 or 0, respectively. The

first case is equivalent to have no time elapse term at all. The second
case makes CT,, = 0: this way the ultimate node representations
will contain temporally-flattened information only (due to CF,).

Linear time temporal aggregation. A naive computation of Equa-
tion (1) takes quadratic time in the number |T(u)| of timestamps in
which a node u exists. This may lead to unaffordable running time
for even moderate number of timestamps. Here, we show how to
shorten this computation to linear. Let [t1, ..., t|7(,)|] be the times-
tamps in T(u) sorted in ascending order. Also, for any t € T(u), let
Z! be a c-dimensional auxiliary vector defined as:

St :{ 0 if £ =17 @),

u )

t/
Zt’eT(u),t’>te a Ny,

@

ift < YT (u)|-
The following lemma shows how to compute Z} incrementally:

LEMMA 3.8. For everya = 1,...,T(u) — 1, it holds that Z,tf =

—(tg+1-ta)
e%a (Nizaﬂ +Zzl;a+1).
Proor.
ta “p=ta)
Zf = Yb=ar,..., T(w)| € < Ny {Eq. (2)}
—(tar1-ta) 4 —(p=tattari—tar1) 4
_ 1 -« b
=e « Wt Yb=at2,. | T(w)] € @ Ny
g ta) ~(tgs1~ta) “Uptar)
_ et e —atl—a’ —b—atll ot
=e « NS t+e e Yb=a+2,... IT(u)| € « Ny
—(tay1-ta)
= e%a (NZG*’] + Z£a+1) . D

The next further lemma shows how to express CTy, in terms of Z1i:

LEMMA 3.9. It holds that CT, = ¥ ;e () (N,) T Z,.

Proor.
W T
CT, = Zt,t’eT(u), st e @ (N Ny {Eq. (1)}
-t
= ZzeT(u) (Nii)TZt’ET(u), >t €« 15
=Yrerwy (NHTZL. {Eq.(2)} O

Given these lemmas, it is easily observed that Temporal SIR-GN
performs a sound linear time computation of CTy;:

THEOREM 3.10. Lines 30-31 of Algorithm 1 soundly compute CT,,.

Proor. This section of the algorithm processes all the times-
tamps in T(u) is descending order. This way, Z.* can be com-
puted from Z%#*! (Line 30), according to Lemma 3.8 (starting from
Zf,m")' = 0, Line 25). CT,, is then computed according to Lemma 3.9
(Line 31). Note that, to compute CT,,, timestamps can be processed

in any order, including the descending one used here. O

3.5 Extensions
We discuss here preliminary ideas to handle alternative settings.

Directed graphs. Separately generate representations as with the
undirected method for each node’s in and out edges, and concate-
nate both into a single representation.

Node labels/attributes. Concatenate them to the embeddings at
each iteration (use one-hot encoding, if needed). This way, they can
exert influence on the clustering, and, as such, on the embeddings.

Inductive setting. This setting refers to computing a “model” that
can be used to yield embeddings for unseen nodes, or, in the most
general case, for the nodes of an entire new temporal graph G. In
the context of Temporal SIR-GN, the model corresponds to the
vector CC of cluster centers that have been produced at the end of a
training execution of the algorithm on a temporal graph other than
G.To get the node embeddings of G, it suffices to run Algorithm 1
by keeping cluster centers in Line 13 fixed and set to CC.

Time-interval representations. By default, Temporal SIR-GN
generates embeddings that are representative of all the temporal
snapshots {G;};er of the input temporal graph G = (V, T, E). To
have embeddings specific for a time interval (or a set of timestamps)
T’ C T, one can simply take the temporal graph G’ = (V, &, T'),
& ={(u,0,t) € & |t € T'} composed of all the snapshots corre-
sponding to timestamps in T’, and run the algorithm on G’.

4 ALGORITHM ANALYSIS

In this section, we analyze the proposed Temporal SIR-GN algo-
rithm, from both a theoretical and an empirical point of view.

4.1 Computational complexity

Time complexity. The CLUSTERINGNODEDESCRIPTION function
(Line 10) runs K-Means on the rows of matrix RN € RIVIx(c*+e)
with number of clusters set to c. This takes O(|V | x ¢3) time (by rea-
sonably assuming the number of K-Means iterations is a constant).
Then (Line 14), it computes distances between node representa-
tions and cluster centers, plus some normalization of the resulting
vectors. This again takes O(|V| x ¢?) time, which corresponds to
the overall time complexity of CLUSTERINGNODEDESCRIPTION.
The runtime of the TEMPORALAGGREGATION function is domi-
nated by the steps at Line 28 and 31. In the former, neighbor ag-
gregation is performed, which takes, for a node u and timestamp
t, O(c X |nbr(u, t)|) time, as it sums up a number |nbr(u, t)| of c-
dimensional vectors. This is repeated for every node u and every
timestamp ¢ € T(u), which leads to overall O(X ey Zrer(u) € X
[nbr(u,t)|) = O(|E| % c) time. The step at Line 31 aggregates (¢ X c)-
dimensional matrices for every node u € V and over all timestamps
t € T(u), thus it takes O(7 X c?) time. As a result, the overall time
complexity of TEMPORALAGGREGATION is O(|&| X ¢ + T~ x c?).
Altogether, CLUSTERINGNODEDESCRIPTION and TEMPORALAG-
GREGATION take O(|&| X ¢ + T % c? +|V| x ¢3). Considering that
those functions are executed for at most d iterations in the main
loop of the algorithm (Line 3), and that ¢ = O(Vh), then the ul-
timate time complexity of Temporal SIR-GN can be expressed as
O(dx (|8|x VR+T xh+|V|x hVh)).If d and h are fixed (i.e., they
are constant), this simplifies to O(|&]), since 7~ = O(|E]).
Space complexity. Besides the input graph, the largest data struc-
tures that the algorithm needs to keep in memory at each iteration
i are matrices (i.e., R and RN) of dimensionality |V| X (c? +c). Thus,
the overall space complexity is O(|E| + V| x ¢?) = O(|E] + V| x h).

4.2 Theoretical properties

Temporal SIR-GN comes with theoretical guarantees if the input
temporal graph exhibits a temporal automorphism (Definition 3.2).



Specifically, as a first theoretical property, we show that the tem-
poral aggregation step of Temporal SIR-GN guarantees equal out-
put node representations if equal description vectors for any two
temporally-automorphic nodes are used. This result is stated in
the following Theorem 4.2, and makes use of the next auxiliary
lemma, which states that the neighbors of temporally-automorphic
nodes must be in turn temporally-automorphic:

LEMMA 4.1. Let ¥ be a temporal automorphism in a temporal
graph G(V, T, &) such that, foru,v € V, ¥ (u) = v with a certain A,,.
It holds that V¥t € T (u), Vx € nbr(u, t), Jy € nbr(v,t+Ay): F(x) = y.

PrOOF. We prove the lemma by contradiction. Assume 3¢’ €
T(u),x’ €nbr(u,t’): F(x')=z, z¢nbr(v,t’ + Ay). Then, by defini-
tion of temporal automorphism, given edge (u, x’,t"), there must
exist edge (F (u), F (x'),t'+Ay) = (v,z,t'+A,). This means that
zenbr(v,t’+A,), which contradicts the assumption. o

THEOREM 4.2. Let there be a temporal graph G = (V,T,E), if the
TEMPORALAGGREGATION function of Algorithm 1 (Line 21) receives
in input a matrix D such that for any two temporally-automorphic
nodes u,v € V it holds that D[, = D{y), then CR[,) = CR[y].

ProOOF. If D[] =D|y] for temporally-automorphic nodes u and
v (hypothesis), then, by Lemma 4.1, the neighbor aggregation at
Line 28 for each will result in identical vectors N,i“ = N£“+A", for all
ty € T(u). A further straightforward consequence of Lemma 4.1 is
that Vt, € T(u), 3t, € T(v): ty = t, + Ay, and vice versa. This con-
sequence along with identical Nl N£“+A“ vectors leads to identical
summation over all the timestamps of each neighbor aggregation
(the cluster frequency vector, Line 29), i.e., CFy =3 eT(w) N,i” =
ZtuET(u) Nz€u+A" =Ztv€T(v) Nziﬂ =CFy.

Then, cluster transition matrices are computed as in Defini-
tion 3.7. As (from above) all t, € T(u) differ from t, € T(v) by

—(ty,—tu) —(ty—tu+Au—Au) —(ty—to)
Ay, then e™ « =e a = e «a

. Coupling this
with the above consequence of identical Né”, N£“+A“ leads to
7_(2{‘_“’) tu\T tl/l

CT, = Ztu,t;eT(u), t,>t, € « (N TN =
—(tg—tutAu—Du) PN N

:Ztu+Au,t,’4+AueT(u), t,>ty € a (N u)TNuu “=
—(t!~ty) ’

=t theT (o), t)>to € ‘@ (N)TN.* =CT,. The theorem follows

as CR[y) = (flatten(CT,) CF,) = (flatten(CT,) CFy) =CR[y)- O

A second property proved below regards the overall embeddings
yielded by Temporal SIR-GN, which are guaranteed to be equal for
temporally-automorphic nodes:

THEOREM 4.3. Given a temporal graph G, for any two temporally-
automorphic (see Definition 3.2) nodes u,u’ in G, the embeddings
R[y) and R[y/| computed by Algorithm 1 are equal.

ProoFr. We apply a proof by induction. The base case consists in
showing that any two temporally-automorphic nodes u and u” have
identical initial representations R([)u] = R([)u,]. In this regard, note
that D° vector is initialized with a constant (Line 1); then, clearly,

D([)u] = D([)u,]. R is the output of the temporal aggregation with

DY in input: then, R([)u] and R([)u,] must be equal by Theorem 4.2.
Now, we assume that the theorem is true for iteration i, and prove
it for iteration i+ 1. This can be accomplished by noticing that equal

representations R . and R

[u] [w]

and u’ lead to equal description vectors D¢ - and D¢ . (Line 5). In
u [w]

for temporally-automorphic nodes u

fact, regardless of the specific cluster centers, the distance between

R’tu], R’tu,] and all those centers are the same, which means that
i i
D,y and D,y , !

and D‘[u,] lead to equal R’[le and R‘[Z}] (Line 6).
The theorem now follows by simply observing that the final em-
beddings R[,] and R[] are the ones produced in the last iteration,

which must be equal like the other iterations. O

i

are the same too. Also, by Theorem 4.2, equal D[u]

Theorem 4.3 has two important consequences. The first is that
for nodes with identical temporal structures, Temporal SIR-GN
generates identical representations. This is vital to effectively cap-
ture temporal structural roles. Note that Theorem 4.3 provides a
sufficient condition. Deriving a necessary condition too is hard, as
it would correspond to having found a polynomial-time algorithm
for the problem of GrarH IsoMORPHISM, which is still a crucial
open question in theoretical computer science [23].

The second consequence of Theorem 4.3 is that Temporal SIR-
GN guarantees time invariance: nodes with identical neighborhood
structures and identical intervals between timestamps will have
identical representations, regardless of whether the absolute times-
tamps are similar. Time invariance allows a temporal NRL model
to capture similarity between events that are close in structure, but
occur at different times. For instance, an epidemic outbreak may
spread in a similar fashion over a similar time-frame (temporal struc-
tural property), but years apart in time. Without time-invariance,
similarities between the two outbreaks would be lost.

4.3 Empirical properties

Although Temporal SIR-GN exhibits theoretical properties for the
limit case of temporally-automorphic nodes, deriving formal guar-
antees for the general case is not easy. This goes beyond the scope of
this work, and we defer it to the future. Instead, here we provide em-
pirical intuitions of why our algorithm is generally well-designed
for the target TEMPORAL STRUCTURAL NRL problem.

First of all, we remark that a connection between the desidera-
tum of complying with temporal structural patterns that resemble
a notion of graph isomorphism is the fact that Temporal SIR-GN
emulates the WL isomorphism test. In fact, inspired by WL, the tem-
poral aggregation in Temporal SIR-GN yields an embedding vector
where part of the components correspond to the (expected) number
a certain temporal structural pattern is exhibited in the neighbors of
anode. These are complemented with novel components represent-
ing the (expected) number of temporal transitions among patterns.
Intuitively, the closer two nodes are to be temporally automorphic,
the more they share such structural patterns, then the more similar
the components of their corresponding embedding vectors.

More in concrete, consider the following experiment. Given a
temporal graph G = (V,T,&) and € € (0, 1], let G€ be the graph
resulting from the addition of a number €|&| of random temporal
edges (u,0,t) ¢ E,u,v € V,t € T to G. We generate G, for
i=0,...,5 withep=0,€61=0.1,...,€5=0.5. Every G is built adding
random edges on top of G¢-1. We compute Temporal SIR-GN’s
embeddings of G and all G and measure the average distance dk,
between the embedding of every node in G and the “replica” of that



node in G¢, for all ¢;. The rationale is as follows. Between G and
G there is a temporal isomorphism, as they are identical graphs.
Then, dg, = 0 is expected. From ¢; on, the temporal isomorphism
progressively disappears, due to the increasing addition of random
edges. Thus, the desideratum here is to observe Je,— < d_e,-+1, for all
i =0,...,4. As shown in the following table (for the real dataset
DPPIN, cf. . Section 5), this is actually the case:

dey.€0=0|de;, €1=0.1|de,, €2=0.2|de,, €3=0.3| de,, €4=0.4|des, €5=0.5

0 [ 1959 [ 3117 | 6799 | 8623 | 10480

Finally, as a specific example where Temporal SIR-GN meets
the desideratum that embedding similarity reflects to which extent
the corresponding nodes are temporally automorphic, consider the
graph in Figure 2. The (12-dimensional) embeddings produced by
Temporal SIR-GN for the lettered nodes of that graph are:

Rajl | 02 0 0163 0 0 0 0275 0 0233 1449 0 1551
R | 0065 0 0074 0 0 0 0108 0 0121 0848 0 1151
Rg] © 0o o o o0 o 0 0 0 0378 0 062

The distances between the embedding of node A and the embed-

dings of the other nodes are |[Rja] — Rg}| = 1.5 < |[R[a] = R[c]| =

2.87. These distances comply with the size of the corresponding

maximal temporally isomorphic subgraphs (Figure 2—(I)-(II)).
Further empirical properties are shown in [37].

5 EXPERIMENTS

In this section, we empirically evaluate efficiency and effectiveness
of the proposed Temporal SIR-GN (for short, T-SIRGN), and com-
pare it to the state of the art. Efficiency is evaluated in terms of the
runtime needed to generate the embeddings. Effectiveness is evalu-
ated by using the generated embeddings in a couple of downstream
machine-learning tasks, namely node classification and regression.

Datasets. We experiment with synthetic and real datasets, whose
characteristics are shown in Table 2 and described below.
Synthetic benchmark datasets. Four synthetic benchmark datasets
were generated (Synth0.0-Syntho0.3). We started from the 8 static
graph structural patterns in Figure 4 (popular in the structural NRL
literature [30]), and we used them as a basis for creating temporal
patterns that ultimately compose the synthetic datasets. Specifically,
we first sort the set E of edges in a static pattern at random, so as
to yield a sequence ey, . .., e|g|. Then, every e; = (u;, v;) is assigned
a timestamp ¢; that is sampled from the set T = {1,...,100}. The
result is a temporal edge (u;, v;, t;). Timestamp sampling is with
replacement, so that the same timestamp can be assigned multiple
edges. An example of this process is illustrated in Figure 5. For
every static pattern, we considered 3 different random orderings of
its edges, and associated every ordering to a sequence of timestamps.
As a result, every static pattern yields 3 different temporal patterns,
for a total of 24 temporal patterns. Nodes’ class labels are defined
by letting a temporal pattern be representative of the (temporal)
structural role of that pattern’s nodes. Hence, each pattern was
assigned a different label, which was in turn used as a label for all
the nodes of that pattern. A node may posibly be part of multiple
patterns. However, we ensured a single label per node by setting
an ordering (at random) among patterns, and associating a node to
the label of the first pattern in the ordering that node appears in.
We repeated this process 104 times, setting different identities
for all the nodes of the generated temporal edges. This led to the
Synth0.0 dataset. We created subsequent datasets from it, each with

Table 2: Dataset characteristics. |V|: #nodes; |T|: #timestamps; |E|:
#temporal edges; |E|: #non-temporal edges (i.e., #node pairs sharing at
least one temporal edge); 7: Y,cy |T(u)|, where T (u) is the set of times-
tamps in which node u exists; #distinct node labels (i.e., classes).

Dataset || VI | ITI | 181 | |El | T  |#Labels
Synth0.0 20280 28 27768 27768 54912 24
Syntho.1 20280 100 29796 29796 58 852 24
Synth0.2 20280 100 31824 31824 62792 24
Synth0.3 20280 100 33852 33852 66708 24
BrazilAir 39300 31 354420 354415 446 836 12
EUAIr 119700 61 1978350 |1978319 |2529289 12
USAir 348110 101 4487670 |4433165 |6246184 12
Hospital [1, 74] 75 9453 32424 1139 50 645 4
HS [1, 17] 180 11273 45047 2239 79578 5
Bitcoin [34, 35] 5881 35592 35592 35592 71184 2
DPPIN [19] 905 36 4826 1758 4462 2
GDELT [98] 16682 |[170522 191M 191M 65M 80
Facebook [77] 4117 10 8029 5143 10226 -
AS [38] 6828 100 1947704 17364 475765 -
UCIMsg [49] 1899 7 22663 13838 4558 -

L X K

Figure 4: Static graph patterns used as a basis for the temporal graph
patterns underlying the synthetic datasets.
— ! B

4 L2 13 21 Is [t1,25]
Figure 5: Example of temporal graph pattern underlying the synthetic
datasets, derived from “building” the left-most static pattern in Figure 4
edge-by-edge over a sequence of timestamps. Aggregating the temporal
edges from the [#,, 5] interval leads to the static pattern at hand.

! i

additional noise in the form of randomly generated temporal edges
between already existing nodes. Specifically, Synth0.1 corresponds
to 0.1 X |&Ep.0| random temporal edges added, where &y ¢ are the
temporal edges in Synth0.0, and so on. Note that the addition of
noise makes it possible that in Synth0.1-Synth0.3 datasets the same
pair of nodes is connected by an edge in multiple timestamps.

Temporally-adapted real datasets. We took three popular static real

datasets from the air traffic domain (that are available, among oth-
ers, from [54]), and converted them to temporal versions, namely
BrazilAir, EUAIr, and USAir. In these datasets, nodes, edges, and
labels represent airports, air traffic, and airport designations as
high to low traffic, respectively. Similar to our synthetic datasets,
each original static graph was used as a base structure, but tem-
porally constructed according to a time sequence. We used 3 time
sequences, and the node classes correspond to the original 4 classes,
along with the corresponding sequence, for a total of 12 ultimate
classes. This was repeated for each temporal structure 100 times.

Real labeled temporal datasets. These are real temporal graphs with

class labels on nodes. Hospital [1, 74] contains (RFIDs) contacts in
a hospital ward in Lyon, France during Dec 6th-10th, 2010, in 20-
second intervals. Node labels identify a node as a patient, medical
doctor, nurse, administrative. HighSchool (HS) [1, 17] contains con-
tacts in 5 classes in a high school in Marseilles, France during 7 days



in Nov 2012, in 20-second intervals, with node labels correspond-
ing to the class of a student. Bitcoin [34, 35] is a who-trusts-who
network of traders on the Bitcoin OTC platform (we ignore edge
weights). Timestamps represent the time of rating. Node labels
correspond to trustworthy/untrustworthy users. DPPIN [19] con-
sists of the protein-protein interactions of yeast cells through 12
stages of 3 metabolic cycles, for a total of 36 timestamps. Node la-
bels identify proteins as uncharacterized/verified. GDELT [98] is a
graph derived from the GDELT 2.0 Event DB, comprised of a record
information taken every 15 mins from news sources over 2016 to
2020. Nodes are actors, edges are events. Node labels correspond to
the country where the actor was present during that event.

Real unlabeled temporal datasets. Facebook [77] is a 3-month subset

of Facebook user interaction from a New Orleans community. The
original Facebook dataset had 9 984 snapshots, most with a single
edge only. In our experiments, we used a more meaningful version
of the dataset where we aggregate consecutive snapshots into 10
uniformly-sized bins. AutonomousSystems (AS) [38] is a communi-
cation network from Border Gateway Protocol logs. UCIMsg [49]
is a directed graph (we ingore edge directionality) of messages be-
tween users of an online community at University of California
Irvine. As with Facebook, the original UCIMsg had 59 811 snap-
shots, most with one edge only. We again here aggregated snapshots
into 7 uniformly-sized bins (as suggested in [41]).

We also experiment with a toy dataset (cf. [37]), specifically
created to empirically verify certain properties of interest.

Competitors. We involve the following state-of-the-art methods.

Liu et al’s CTGCN [41], the most direct competitor, in three
variants: U-CTGCN-S (unsupervised, structural loss), U-CTGCN-C
(unsupervised, connectivity-preserving loss), S-CTGCN-C (super-
vised, connectivity-preserving loss).

DynGem [22], GCRN [62], TGAT [88], TGN [55] as representa-
tives of temporal-GNN-based NRL. As for GCRN, we assess both
the supervised (S-GCRN) and unsupervised (U-GCRN) versions.
DynGem, TGAT, TGN are solely unsupervised.

TIMERS [95], as a representative of proximity-based temporal
NRL approaches. This method is also strictly unsupervised.

DGI [76], NWR [69], SIR-GN [30] are tested as representatives
of (different classes of ) static NRL approach: DGI is a GNN-based
method; NWR is a “hybrid” method, which combines structural and
proximity-based NRL; SIR-GN (the precursor of our T-SIRGN) is a
purely structural method. These methods are run on the flattened
input temporal graph (i.e., a static graph where an edge is drawn
between any two nodes if they share at least one temporal edge).
Within this category of competitor, we also include a version of
our T-SIRGN, termed StructuralShifted-T-SIRGN (for short, SS-
TSIRGN), where we let & approach 0. This leads to embeddings that
reflect the temporally-flattened structural aspect only (i.e., due to
cluster frequency vector CF, cf. Section 3.4). As such, SS-TSIRGN
corresponds to a static structural NRL method that is run on a
weighted flattened version of the input temporal graph (where edge
weights are the number of timestamps in which that edge appears).

For CTGCN, TGAT, TGN, DGI, NWR, SIR-GN, we use the official
public implementations [30, 41, 55, 69, 76, 88]. For the remaining
competitors, we use the implementations in the CTGCN repository.

Parameters. Unless otherwise specified, all the competitors are
tested using their default/suggested parameters. In T-SIRGN (and
SS-TSIRGN), a large d is used, so as to let it run until the stopping
criterion is met (cf. Section 3.2), while a appropriate to every
dataset and experiment was chosen (details reported case by case).
The size h of the output embeddings is set to 128 for all the methods.
For our T-SIRGN (and SS-TSIRGN), this corresponds to ¢ = 10.

Assessment. For node classification (Section 5.1), we train a clas-
sifier using the embeddings as feature vectors and the node labels
as a target variable to be predicted. We tried Extra Trees, XGBoost,
MLP classifiers. Unless otherwise specified, the results refer to Extra
Trees. We measure accuracy (Acc) and F1 (both € [0%, 100%], higher
values meaning better performance) by 5-fold cross-validation.
For regression, (Section 5.2), PageRank (PR), degree centrality
(DC), hubs and authorities (HITS), betweenness centrality (BC), and
eigenvector centrality (EC) metrics are computed for every node and
snapshot, then summed over all timestamps, to have temporally-
aggregated scores for every node. We train a regressor (Random
Forest) using the embeddings as feature vectors, and each aggre-
gated score as a target variable to be predicted (one regressor per
metric). The performance is measured in terms of coefficient of de-
termination (r? € (—co, 1], higher values corresponding to better
performance) and mean squared error (MSE € [0, +00), lower values
corresponding to better performance), by 5-fold cross-validation.

Testing environment. For timed experiments, all methods were
run on a single machine equipped with an Intel 9900k 5GHz CPU,
64GB RAM, and an Nvidia RTX 3090 GPU with 24GB of memory.

5.1 Node classification

Table 3 shows the node classification results. On all the synthetic
datasets (Synth0.0-Synth0.3; results here refer to XGBoost classi-
fier), our T-SIRGN outperforms all other methods. The performance
gain is drastic over all the competitors but TGAT, whose perfor-
mance is closer, but still far lower. T-SIRGN reaches perfect Acc and
F1 on the noise-free Synth0.0. From Synth0.1 on, noise in terms of
random temporal edges is added. Thus, T-SIRGN expectedly shows
an incremental performance decrease as the noise increases.

T-SIRGN is the best performer on the temporally-adapted datasets
too. Note that these datasets are much larger than the synthetic
ones. As such, DynGem and TGAT were not able to run in reason-
able time (i.e., within 48 hours) on two of them, while TGN was
unable to run on all such datasets due to memory constraints.

T-SIRGN consistently outperforms all static NRL methods too
(i.e., DGI, NWR, SIR-GN, SS-TSIRGN). This demonstrates that our
datasets are effective in testing for a method’s ability to capture not
only structural, but temporal structural information.

The general superiority of T-SIRGN is confirmed on the real
datasets. T-SIRGN is the best performer on Bitcoin and DPPIN. In
this regard, note that DPPIN is a highly unbalanced dataset, with the
majority-class label spanning the 98% of all the labels. For DPPIN,
thus, the Acc measure is not really meaningful. What matters is the
F1, in terms of which T-SIRGN outperforms all its competitors by
at least 9 percentage points. On Hospital and HS, the supremacy of
T-SIRGN is slightly less evident, thus remaining relevant: T-SIRGN
is the second best performer on Hospital, and the best on par on
HS. The reason of this is likely because the node labels in Hospital



Table 3: Node classification of our T-SIRGN vs. its competitors. Accu-
racy (Acc € [0%,100%]) and F1 € [0%,100%] assessment criteria (higher
values mean better performance). Best results in bold, second best in
italic.

(a) Synthetic and temporally-adapted datasets

Synth0.0 Synth0.1 Synth0.2 Synth0.3 BrazilAir EUAir USAir

Method e FT{[Ace[F1][ Acc[ F1][ Acc[F1[[Acc] F1[[Acc] F1[[Acc] FT
DynGem 8 2 8| 2 8| 2 7| 2 16| 11 -1 - - -
TIMERS 8 2 8 2 7] 1 8l 3 101 2 91 2 9| 2
U-GCRN 6 4 6| 4 6| 4 6| 4 12| 12 11| 10 11|10
S-GCRN 6 3 7! 5 8| 6 9| 8 8| 6 91 9 11|11
U-CTGCN-S 8 2 8| 2 8| 2 8| 2 16| 9 14| 7 12| 6
U-CTGCN-C 17| 15 8| 6 7| 6 71 6 33| 33 8| 8 12|12
S-CTGCN-C 17| 16 7| 6 9| 8 101 9 441 45 211 22 1111

TGAT|| 93| 93|| 80| 80|| 65| 65|| 58| 57|| 51| 51 - - -| -

TGN 9 5 9] 5 8| 5 71 5 - - - - -| -

DGI|| 28| 24|| 25| 22| 20| 18| 16| 15|| 23| 23|| 16| 16| 17|16

NWR| 33| 30| 31|30|| 25| 25| 25| 25|| 26| 26|| 25| 25| 10|10
SIR-GN || 30| 26|| 44| 42| 35| 35|| 26| 26| 32| 32|| 29|29|| 29|29
SS-TSIRGN || 30| 27|| 42| 40|| 33| 33|| 26| 26| 31| 31|| 28| 28|| 25|25

T-SIRGN][100]100]] 86[86][ 72] 72]] 61[60]] 80[81[[ 74] 74]] 45[45

(b) Real labeled datasets

Hospital HS Bitcoin DPPIN
Acc[F1[[Acc[F1][Acc[ F1][Acc[ F1

DynGem || 39| 14| 23| 7|| 57| 36| 98|50
TIMERS|| 41| 17| 24| 10|| 66| 65|| 98|50
U-GCRN 35| 19| 22| 22|| 56| 49| 98|50
S-GCRN 41 29| 25| 23| 61| 56|| 98|49
U-CTGCN-S|| 41| 17|| 24| 10|| 57| 36|| 98|50
U-CTGCN-C|| 35| 20|| 14| 13|| 57| 49| 98|50
S-CTGCN-C|| 36| 20|| 23| 21|| 64| 58|| 98|49
TGAT|| 75|58|| 38| 38|| 81| 81|| 97|49

TGN|| 45| 33|| 42| 41|| 66| 65| 98|49

DGI|| 35| 23| 28| 26| 70| 69|| 98|49

NWR|| 35] 23| 29| 27|| 65| 64|| 97|49
SIR-GN || 55| 37|| 44| 42| 80| 80|| 97|49
SS-TSIRGN || 35| 30|| 48| 46|| 80| 80|| 97|49

T-SIRGN]] 52] 42][ 48] 46][ 85[85][ 98]59

Method

and HS do not comply with a structural semantics solely, but they
have some proximity-based flavor as well.

GDELT dataset. As for GDELT, we provide here a separate dis-
cussion, as the experiment was slightly different due to the time-
varying nature of the node labels, and also because we could only
be compared to literature values, as none of the (non-static) se-
lected competitors could be run for such a large dataset, due to
time/memory constraints. The experiment was as follows. The
graph from 2018-19 (spanning 14k nodes, 91M temporal edges, 69k
timestamps) was used as a training set to compute a T-SIRGN’s
model (cf. Section 3.5, “Inductive setting”). Then, for each month
of 2020, we (i) computed embeddings based on trained T-SIRGN’s
model, (ii) trained a classifier (Extra Trees) with those embeddings,
and (iii) measured F1 by a temporal 80/20 train/test split. The av-
erage F1 over all months is 12.95%. This value is higher than the
state-of-the-art one (11.9%) reported by Zhou et al. [98] for a sim-
ilar experiment. We remark that this is a classification task with
80 classes, thus even an improvement of one percentage point is
relevant. Zhou et al. [98] provide a framework on which to run
temporal GNNs in faster time. They involve both TGAT and TGN,
and TGN demonstrated the highest performance on GDELT, at F1
= 11.9% (while other methods clustered around F1 = 10-11%).
Importantly, our Temporal SIR-GN took about 30 minutes on the
training set. As said above, none of the (implementations we used

Table 4: Regression of our T-SIRGN vs. its competitors. PageRank (PR),
degree centrality (DC), hubs and authorities (HITS), betweenness central-
ity (BC), and eigenvector centrality (EC) metrics. Coefficient of determi-
nation (r? € (-, 1], higher values mean better performance), and mean
squared error (MSE € [0, +0), lower values mean better performance) as-
sessment criteria. Best results in bold, second best in italic.

M | PR ] DC || HITS ] BC || EC
ethod v v v v -
[P T mse [[ 7" T msE [ 7 [ MsE]] r* [ MSE || r* [ MSE
DynGem [[-9.583] 0.150 [[-6.195] 0.109 |[-1.782[ 0.028 [[-1.316] 0.0575 | [-1.407] 0.0571
TIMERS _[[-5.70 | 0.146 |[-3.551] 0.107 ||-1.172] 0.0263 |[-0.847| 0.0555 | [-0.924] 0.0555
< |[U-GCRN_[[5.070[ 0.147 |[-3.243] 0.109 ||-2.080] 0.0288 ||-1.867 | 0.0601 | [-1.862] 0.0596
2 |[U-CTGCN-5[[-9.04] 0.145 |[-5.610] 0.107 |[-0.574] 0.0257 | [-0.667] 0.0536 | [-0.607] 0.0522
& |[O-CTGCN-C[[3:217] 0.140_|[-2.126] 0.102 ||-0.451 0.0268 ||-0.137] 0.0489 [|-0.147| 0.0496
TGAT || 0.82 [249¢-3 || 0.728 |2.44¢-3| [-0.229]4.85¢-4] | 0.113 |4.47¢-3]|-0.031| 2.49¢-3
TGN [[-0.104[3.05¢-2[ [0.0807| 2.04e-2|[-0.873 1.56e-3 | [ -0.289 | 6.24e-3 | [-0.141 7.47¢-3
SS-TSIRGN || 0.912] 1.26¢-3 [ 0.971|2.64e-4][ 0.03797.93¢-3 || 0.306| 3.46¢-3|| 0.229| 2.64¢-3
T-SIRGN  []0.9221.09e-3[] 0.967 | 3.29¢-4[[0.112 7.02¢-3[] 0.419 [2.96e-3[0.358(2.28e-3
DynGem |[0.267] 0.0505 |[0.0296| 0.0791 [|0.0055| 0.0513 | |-0.265 | 0.0479 |[0.0423| 0.0667
TIMERS 0.307 | 0.0509 [{0.0831] 0.0786 || 0.154 | 0.0498 || 0.175 | 0.0453 || 0.076| 0.0789
o0 U-GCRN  [0.0853[ 0.0549 [[0.0193] 0.0775 || 0.136 | 0.0496 ||-0.667 | 0.0538 ||0.204| 0.0618
= |[U-CTGCN-S[[0.371] 0.0488 [[0.0512 0.0793 || 0.146 | 0.0496 | [0.0447] 0.0454 |[0.135] 0.065
% U-CTGCN-C[| 0.48 | 0.0442 || 0.411 | 0.0622 || 0.403 | 0.0421 ||-0.165 0.0479 ||0.556 | 0.047
TGAT 0.425(3.103e-3| | 0.424 |3.92e-3|| 0.29 |3.31e-3[| 0.049 [2.99e-3|(0.391| 3.1e-3
TGN -0.185| 5.16e-3 [ [-0.161| 7.6e-3 [[-0.214[4.19e-3|| -0.29 |4.05e-3||-0.117|6.39e-3
SS-TSIRGN [[0.538(2.11e-3[[ 0.878 | 8.0e-4 || 0.454 [1.95e-3|| 0.369 [2.17e-3|| 0.720|1.55e-3
T-SIRGN_[[0.559] 2.43¢-3[[0.887 7.74e-4][0.468| 2.0¢-3 || 0.241 | 2.22¢-3|[0.723] 1.6e-3
DynGem [[-0.618] 0.006 [[-0.63 [ 0.006 | -0.66 | 0.006 [[-2.446] 0.006 [[-0.207 0.01
TIMERS_[[-0.777] 0.007 |[-0.702] 0.007 |[-0.708] 0.007 || -85 | 0.006 ||-0.057] 0.009
U-GCRN_|[-143.3[ 0.011 |[-231.6] 0.011 || -179 | 0.011 ||-19622] 0.01 ||-3.756 0.0153
2 |[U-CTGCN-S[[-0.07 | 5.45¢-3| [0.0839 0.0054 ||-0.081] 0.0054 | [-0.1872] 0.005 ||-1.624] 0.0136
U-CTGCN-C[[-0.786] 0.007 |[-0.784] 0.006 ||-0.824] 0.007 |[-12.27] 0.006 ||-0.748 0.012
TGAT _|[-0.216[9.33¢-4 | [0.0491[ 8.05¢-4] [0.0752[8.83¢-4]| - - [[0:0937]9.44e-2
TGN - - - - - - - - - -
SS-TSIRGN [[0.925] 6.45¢-5[[0.963 | 4.94¢-5||0.952[4.78e-5[[ 0.807 | 6.9¢-5 [[0.926]5.06e-5
T-SIRGN  []0.933[6.24e-5]| 0.956 [4.49e-5[[0.952 4.82¢-5[] 0.769 [6.43e-5[| 0.9 |6.19¢-5

for the) selected competitors could run on GDELT with the hard-
ware at our disposal. Zhou et al. report training times on GDELT
(for 2016-18) of 8 500 (TGAT) and 900 (TGN) seconds for a single
epoch, which are quite a lot, and they are anyway achieved for im-
plementations of those methods within their efficient framework.

5.2 Regression

Table 4 shows the comparison between our T-SIRGN and its com-
petitors in the regression task. Note that static NRL methods are
not included here, as they must run on a static version of the graph,
which differ from the temporal graphs such that comparison is not
sensible. In general, T-SIRGN achieves r2 close to one and/or MSE
close to zero, thus resulting the best performer in most cases. In the
few cases where T-SIRGN is the second highest performer, the struc-
turally shifted version of our method (SS-TSIRGN) is the highest (or
TGAT, in just one case). This complies with the design principles of
this experiment: SS-TSIRGN emulates temporal aggregation in its
execution, thus its good performance is not surprising here, where
the prediction of scores aggregated over time is required.

As far as the other competitors, most of them appear completely
unable to capture these metrics, with R? values negative or close
to zero. Only CTGCN and TGAT show any capability at this task,
while still remaining consistently outperformed by our T-SIRGN.

5.3 Efficiency

Running times. In Figure 6, we show the runtimes of our T-
SIRGN and all its competitors (but SS-TSIRGN, as it is a variant of
T-SIRGN, thus it runs comparably to it, and the static NRL methods,
for which the comparison here is not meaningful, as these run on
static yet much smaller versions of the temporal graph with flat-
tened timestamps). We report results on the Synth0.1, BrazilAir,
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Figure 6: Runtime of the proposed T-SIRGN and its competitors on several datasets. Actual time in seconds displayed on each bar.
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Figure 7: Effect of number of nodes (|V|), temporal edges (|E|), and
7 on the running time of the proposed T-SIRGN, on random temporal
graphs of varying size and number of snapshots.

EUAIr, and USAir datasets, representing a full range of graph sizes,
total timestamps, and timestamps per node.

Runtimes were determined on a single machine (cf. beginning of
Section 5). The GNN-based methods (DynGem, GCRN, CTGCN)
run on a GPU, while the TIMERS implementation we use in our
experiments is a CPU multi-threaded one. For the S-CTGCN-C
method, memory constraints required usage of the CPU rather
than the GPU on USAir. TGN and TGAT were both run on a GPU,
and memory constraints prevented the completion of TGN for any
airline dataset. DynGem, U-GCRN, and U-CTGCN-C could not
terminate within 52 hours on USAir, thus we do not report their
results. For TGAT, the same happened on both EUAir and USAir.
Our T-SIRGN was tested here using a single-threaded CPU imple-
mentation. Thus, it is under adverse conditions with respect to the
competitors. Despite that, it shows exceedingly shorter runtimes,
sometimes greater than two orders of magnitude faster than others.

Scalability. We also determined the effects of graph size (nodes |V|,
temporal edges |E|) and timestamps per node (77) on the runtime
of T-SIRGN on a set of random temporal graphs. For these tests,
we use =10, d=5. |V| was varied in a graph with |E| =100k, and
T =200k fixed, while |&| was varied in a graph with |[V|=1k and 7 =
100k. As shown in Figure 7(a)—(b), T-SIRGN’s runtime increases
sub-linearly in the number of nodes. Also, the combined effect of
temporal edges is roughly linear, which is consistent with our time
complexity analysis. Remarkably, T-SIRGN handles 10M temporal
edges in less than 3 minutes: this confirms its high efficiency.

We also isolated the effect of 77, using graphs with a fixed num-
ber of nodes and edges (|V| =1k and |&| = 100k). The number of
timestamps was varied such that 7~ increased while the number of
temporal edges remained fixed. Figure 7(c), shows the contribution
of 7~ to be linear, also consistent with our theoretical complexity.

5.4 Parameter analysis

We tested iterations (d), embedding size (h), and & on the Synth0.1
dataset, and plotted against runtime and accuracy (Figure 8). We
focused on our T-SIRGN, and, for parameter h, on its closest com-
petitors GCRN and CTGCN (in all variants). We did not involve
any competitors for « as it is a parameter of T-SIRGN only. Also,

'S
=

—e— TSIRGN
z —— S-GCRN

=30 veern (151« T.SIRGN

8 —»— S-CTGCN-C

220 —e— UCTGEN-C [1()

e —s— U-CTGCN-S W
£ 10 +- linear 5

= PN i P s

200 400 600 105103107 10" 103 10°

875 75 75
% —— T-SIRGN
g 50 50 50
525
< % 1" o T.SIRGN
——
102 30 200 400 600 10-510-210-T 10 103 10°
(a) Depth d (b) Embedding size h (c) Parameter o

Figure 8: Runtime and accuracy (Acc) effects of parameter choice on
the Synth0.1 dataset.

manipulating d in the GNN-based competitors is not trivial, as it
corresponds to the number of GNN layers (it is often hardcoded).

Figure 8-(a) shows the runtime for T-SIRGN increases linearly
with d (consistent with its theoretical time complexity), while max-
imal accuracy requires a small d. The stagnating performance after
some iterations complies with T-SIRGN’s design, which guarantees
no significant drop in unique embeddings once these get stable.

The trend of T-SIRGN’s runtime is roughly proportional to the
square root of h (Figure 8-(b)). Accuracy is fairly stable, with the
only exception of an expected (slight) decrease when h is very low
(i.e., 2-10). The competitors run roughly linearly in h, and similar
considerations to T-SIRGN hold for their accuracy.

Varying o (Figure 8-(c)) impacts accuracy, but not runtimes. A
very small a leads to consistently lower accuracy, which complies
with the fact that a close to zero leads to a version of T-SIRGN
(SS-TSIRGN) that considers temporally-flattened information only.

6 CONCLUSION

This paper presents Temporal SIR-GN, a novel method for struc-
tural representation learning in temporal graphs, which overcomes
efficiency and effectiveness limitations of existing methods. Tempo-
ral SIR-GN performance are attested both theoretically and experi-
mentally, by an extensive evaluation on synthetic and real data.
Future work includes deriving further theoretical properties,
experimenting with the settings in Section 3.5 and with more
tasks/applications, and investigating how to handle our target tem-
poral structural patterns with temporal-GNN-based approaches.
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A APPENDIX - PROPERTIES ON A TOY
DATASET

Here we experimentally test the capability of T-SIRGN and its
competitors to adhere to specific desired properties (including those
discussed in Section 4.2). To this end, we created a toy temporal
graph (Figure 9-(a)), and generated 6-dimensional embeddings
from each method. Note that only the unsupervised versions of
the related works are examined, as this dataset has no node labels.
The embeddings for the lettered nodes in red (those of interest to
demonstrate the properties) were then normalized and reduced to
2 dimensions using a PCA, in order to plot them in visual space.
These plots are illustrated in Figures 9-(b)-(j).

Aspects of interest. Specific characteristics of the toy dataset
make it ideal to demonstrate our desired properties:

(C1) Nodes N and P have neighborhoods with identical structure
(i.e., those neighborhoods are isomorphic), in every times-
tamp. However, they have neighboring nodes with different
node identity: this removes the possibility of generating sim-
ilar embeddings based upon node connectivity.

(C2) Nodes A and F have identical structures, different timestamps,
but identical “time deltas”, i.e., identical change in time over
the timestamps (t — t; = t4 — t3 = 4).

(C3) Node J has the same time delta as A and F, along with the
same degree, but a slightly different structure. Node Q has
a different structure and degree than A, but identical times-
tamps. Both J and Q have different structure than all other
lettered nodes and one another.

(C4) Nodes K, M, and N have identical structure as A and F, but
have time deltas of 5, 6, and 50, respectively, to test the effect
of increasingly larger time deltas.

Findings. (C1) Our T-SIRGN (run with a = 10) creates representa-
tions in which N and P are directly overlapping. This demonstrates
that it generates identical embeddings for two nodes with identi-
cal structure and timestamps, regardless of the their connectivity
properties (Theorem 4.3). Moreover, the embeddings of N and P
are correctly far away from the other nodes, due to their vastly
different time delta. Importantly, DynGem, U-CTGCN-C (using a
connectivity-based loss), U-GCRN , and TIMERS all generate dif-
ferent representations for N and P, due to their connections with
neighbor nodes with different node identities. U-CTGCN-S (using
a structural loss) and TGAT create identical embeddings for N and
P (but both have other issues, see next).

(C2) A and F are directly overlapping one another for T-SIRGN.
This demonstrates the time invariance property of T-SIRGN (The-
orem 4.3, again): two nodes with identical structure and time delta
will also have identical embeddings. U-CTGCN-C does not capture
this property, nor does U-GCRN , both in fact show no overlap
between any nodes. TGAT does show some overlap between nodes,
but oddly an overlap exists between A and Q, which have iden-
tical timestamps, but different structures and even node degree.
U-CTGCN-S and TGN appear to capture the overlap between A
and F, but closer inspection shows that U-CTGCN-S generates the
same representation for A, F, ], K, M and Q, which includes nodes
with differing timestamps, time deltas, and structures. TGN gener-
ates identical representations for A, F, J, P and K,M,N,Q. This is odd,
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Figure 9: Results of the experiment to check the capability of the pro-
posed T-SIRGN and its competitors of fulfilling a number of properties
of interest. (a) Toy temporal graph, composed of twelve graph snapshots,
from timestamp #; to timestamp ¢;,. Every snapshot is plotted right be-
low its corresponding timestamp. Lettered nodes (in red) are the ones of
interest. Black nodes have node identities all different than each other.
(b)-(j) 2D projection of the embeddings generated on the toy graph by
the various methods.

as A and Q have identical timestamps but different structure, and
are placed far apart. Similarly, N and P have identical timestamps
and structure but different node identities, and are placed apart, as
well as A and F have identical structure but differing time deltas,
and showed overlapping embeddings. No pattern of logic for TGN
can be defined using these results. Thus, the overlap between A and
F recognized by U-CTGCN-S and TGN results from an inability
to discriminate between nodes, rather than an ability to capture
structural or time delta similarities. The same observation holds
for DynGem and TIMERS, as well.

(C3) T-SIRGN generates an embedding for J that is near those
for A and F. This is desirable, as these nodes have structures that
differ by only a single edge in each timestamp, and share identical



time deltas. When the temporal aspect is given lower weight (with
a close to 0, in the SS-TSIRGN variant), the structure differences
become more impactful, and ] is (incorrectly) separated farther from
the others. Importantly, ] and Q have different structures from A,
F, K, M, N, and P and from each other. For a method to claim the
ability to capture structural roles, ] and Q should be separated in
the embedding space from one another and from the others.

(C4) {A, F}, Kand M have embeddings for T-SIRGN that sit close
to one another, while remaining different. This is desirable as those
nodes have identical structure, and only a small difference (i.e., 1)
in their time deltas. Conversely, N, P is correctly placed far away
from all those nodes: although they share the same structure with
the others, their time deltas are much higher (i.e., 50 vs. 4,5, and
6). For TGAT, M is projected far from the other nodes, though it
has identical structure to A, but with a time delta that differs by
only 1. SS-TSIRGN, DynGem, U-CTGCN-S, and TIMERS create
identical embeddings for (at least part of) these nodes, thus failing
to recognize the temporal differences altogether.
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